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ABSTRACT

In this paper, we compare the forecasting performance of  several sta-
tistical models, which are used to describe the occurrence process of
earthquakes in forecasting the short-term earthquake probabilities dur-
ing the L’Aquila earthquake sequence in central Italy in 2009. These
models include the Proximity to Past Earthquakes (PPE) model and
two versions of  the Epidemic Type Aftershock Sequence (ETAS) model.
We used the information gains corresponding to the Poisson and bino-
mial scores to evaluate the performance of  these models. It is shown
that both ETAS models work better than the PPE model. However, in
comparing the two types of  ETAS models, the one with the same fixed
exponent coefficient a = 2.3 for both the productivity function and the
scaling factor in the spatial response function (ETAS I), performs bet-
ter in forecasting the active aftershock sequence than the model with
different exponent coefficients (ETAS II), when the Poisson score is
adopted. ETAS II performs better when a lower magnitude threshold of
2.0 and the binomial score are used. The reason is found to be that the
catalog does not have an event of  similar magnitude to the L’Aquila
mainshock (Mw 6.3) in the training period (April 16, 2005 to March 15,
2009), and the a-value is underestimated, thus the forecast seismicity
is underestimated when the productivity function is extrapolated to
high magnitudes. We also investigate the effect of  the inclusion of  small
events in forecasting larger events. These results suggest that the train-
ing catalog used for estimating the model parameters should include
earthquakes of  magnitudes similar to the mainshock when forecasting
seismicity during an aftershock sequence.

1. Introduction
On April 6, 2009 at 01:32 (UTC), a magnitude Mw 6.3

earthquake struck the Abruzzi region in central Italy.
Despite its moderate size, the earthquake caused more
than 300 fatalities and partially destroyed the city of
L’Aquila and many surrounding villages. The epicen-
ter of  the mainshock was located a few km WSW of
the city. It occurred on one of  the NW–SE trending

normal faults that form part of  the 800 km long seg-
mented normal fault system that accommodates
crustal extension in the Apennine mountain range (e.g.,
Anderson and Jackson, 1987; Roberts et al., 2002). The
mainshock had a hypocenter depth of  8.3 km, within a
seismogenic layer that is thought to be between 2 and
10 km deep. It ruptured a northwest-trending, 18 km
long fault, with a dip angle of  45˚ to the southwest. It
was preceded by earthquake activity starting at the end
of  2008, which occurred in a silent region at the south-
ern end of  the northern Apennine extensional belt
(Chiarabba et al., 2009). This foreshock sequence was
characterized by clustering around the mainshock nu-
cleation area. The largest earthquakes of  the foreshock
sequence included an Mw 4.0 event, which occurred on
March 30, 2009 at 13:38 (UTC), one week before the
mainshock, and Mw 3.9 and Mw 3.5 events that occurred
on April 5, 2009 at 20:48 and 22:39 (UTC), respectively.
Many other destructive earthquakes are recorded in the
historical catalog for this area (Gruppo di lavoro CPTI,
2004). The last dramatic event was the Mw 6.7, 1915
Avezzano earthquake, located about 30 km to the south-
east of  the 2009 L’Aquila earthquake epicenter, which
caused about thirty thousand deaths (see Figure 1).

In light of  the historical earthquake records, this
region of  the central Apennines, with one of  the high-
est seismic hazards in Italy (Slejko et al., 1998; Albarello
et al., 2001; Rebez et al., 2001; Akinci et al., 2009, and
references therein), has been classified as a second cat-
egory seismic zone in the Italian seismic resistant build-
ing code (Gruppo di lavoro MPS, 2004). By the end of
November 2009, more than 16,000 aftershocks with
ML ≤ 5.5 had been recorded by the Istituto Nazionale
di Geofisica e Vulcanologia (INGV) seismic network.
Initially, this aftershock activity occurred close to L’Aquila
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and towards the southeast of  the town, but a couple of
days later it migrated towards the northwest, to the
Barete and Campotosto zones (Figure 1). In fact, after
the mainshock of  April 6, 2009, two other strong events
occurred with their own aftershocks. The first one oc-
curred about 40 hours after the mainshock, at 17:47
UTC on April 7, 2009 with a magnitude of  Mw 5.6, to
the southeast (in the Valle d’Aterno), and the second
occurred at 00:53 UTC on April 9, 2009, with a magni-
tude of  Mw 5.4, to the north of  the mainshock near
Campotosto, about 16 km north of  L’Aquila (Figure 1).
Large aftershocks can cause great damage to building
structures that have already been weakened by the
mainshock. Thus, it may be important, in such cir-
cumstances, to evaluate the aftershock probability in
real time, to avoid losses from aftershocks. The princi-
ple of  evaluating the probabilities of  earthquake oc-
currence using point process models, which are
mathematically formulated with conditional intensity
functions, was framed by Vere-Jones (1998). Among dif-
ferent models for seismicity, the Epidemic-Type After-
shock Sequence (ETAS) model, proposed by Ogata
(1988), which describes the features of  earth-quake
clustering of  foreshocks, main shocks, and aftershocks,
has become a standard model for testing hypotheses,
and a starting point for short-term earthquake forecasts
(Console and Murru, 2001; Console et al., 2003; Murru
et al., 2009; Zhuang et al., 2004; Helmstetter and Sor-

nette, 2003; Hainzl and Ogata, 2005; Zhuang et al.,
2008; Lombardi et al., 2010; Marzocchi and Lombardi,
2009). In the last decades, this model has been greatly
developed (see Helm-stetter and Sornette, 2002; Ogata
et al., 2003; Ogata, 2004; Zhuang et al., 2005; Console
et al., 2006a,b, 2007). In particular, its space-time distri-
bution now has several different mathematical forms,
developed by different researchers such as Marzocchi
and Lombardi (2008, 2009), Helmstetter et al. (2006),
Werner et al. (2011), and Zhuang (2011).

During the L’Aquila sequence, the ETAS model
was used to forecast aftershocks in real time after the
April 6, 2009 L’Aquila earthquake (Marzocchi and
Lombardi, 2009). For the month following the L’Aquila
earthquake, there was a good fit between the forecasts
and observations. Subsequently, in 2012, two versions
of  the ETAS model were applied in real time to the seis-
mic sequence of  the May–June 2012 Emilia earth-
quakes (Marzocchi et al., 2012) to track the daily and
weekly evolution of  aftershock sequences. The models
used were by Falcone et al. (2010) and Lombardi and
Marzocchi (2010). However, model performance was
not evaluated in their work. Nanjo et al. (2012) applied
the ETAS model to Japan, together with four other
models, in a retrospective way, for the aftershock se-
quence following the March 11, 2011 magnitude (M) 9.0
Tohoku-Oki earthquake, and obtained reliable results.
They found that the model by Falcone et al. (2010) was

MURRU ET AL.

2

Figure 1. Epicentral distribution of  earthquakes during the learning (April 16, 2005 – March 15, 2009) and test (March 16, 2009 – June 30,
2009) phases reported by the INGV data center in the area under analysis, affected by the 2009 L’Aquila earthquake. There were 2,588 (ML≥1.6)
events (blue circles) during the learning period. Green dots around (42.0◦N,13.0◦E) indicate events (151) recognized as quarry blast activity,
which were not considered in the analysis. Red circles indicate events with ML≥2.0 (3007) analyzed in the testing phase. The L’Aquila sequence
occurred in a silent region at the southern end of  the northern Apennine extensional belt. Stars indicate the three Mw≥5.4 events that oc-
curred in April 2009. Solid lines are mapped Quaternary faults. The Paganica Fault is indicated in blue. The 1915 Avezzano earthquake source
is also shown in the map DISS Working Group, 2010 (DISS 3.1.1, 2010) as a rectangular box.
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better suited in the number forecasts compared to other
models. This ETAS model is one of  the models submit-
ted to the various testing centers of  the CSEP (Collabo-
ratory for the Study of  Earthquake Predictability) in
Japan (Tsuruoka et al., 2012), Italy, New Zealand, and
California. In this study, the primary objectives are to
compare two versions of  the ETAS model developed by
different research groups, and to evaluate the influence
of  small earthquakes on predictive performance. The
first version, named ETAS I, was developed by Ogata
(1998) and Console et al. (2010a,b). The second, here-
after referred to as ETAS II, is used by Zhuang et al.
(2005), Ogata and Zhuang (2006), and Zhuang (2011).
Although these two versions belong to the same class of
ETAS model, their details, such as how to determine
background seismicity, how to deal with boundary con-
ditions, and how to estimate parameters, are quite dif-
ferent. In this study, we hope to find which choices result
in better forecasting performance.

To test their capability for short-term forecasting of
moderate and large earthquakes in the area mentioned
above, we apply these two epidemic models to the in-
strumental database of  shallow seismicity (March 16,
2009 – June 30, 2009) collected by INGV. We use the
probability gain to evaluate the forecasting performance,
with the Proximity to Past Earthquakes (PPE) model,
which is a forward kernel estimate model, as the refer-
ence model. We are also going to verify how much in-
formation is carried by small events, compared to larger
events, in forecasting the occurrence of  the mainshock.
Two versions of  the ETAS model are considered for the
purpose of  understanding the role of  small events in
forecasting large events, in order to verify the statement
made by Helmstetter (2003) and Helmstetter et al. (2005)
that small events are important in triggering large earth-
quakes.

Another aim of  this experiment is to see how the
forecasting of  seismicity works by usingmodels with
nearly blind parameters. The formal Italy catalog
(ISIDE) begins in 2005, and the forecasting period be-
gins in 2009. Thus, there are only four years of  low seis-
micity with which to train the model parameters. We
attempt to evaluate the forecasting performance of  the
models when applied to such a catalog.

2. Models for earthquake occurrences

2.1 The PPE model
The PPE (Proximity to Past Earthquakes) model

was proposed/formulated by Jackson and Kagan (1999)
and named by Rhoades and Evison (2004). Essentially, it
is a Poisson model with a specific method of  estimating
the seismicity rate, i.e., it is a smoothed seismicity base-

line model. It can play the role of  a spatially varying ref-
erence model against which the performance of  time-
varying models can be compared. For this reason, it is
adopted in this study as the reference model. The Relative
Intensity (RI) model by Nanjo (2010, 2011) and the Sim-
ple Smoothed Seismicity (Triple-S) model by Zechar and
Jordan (2010), also belong to this category, the only dif-
ference being how the seismicity rate is estimated. The
PPE model is used as a forward likelihood method to es-
timate the seismicity rate function (see also Chiodi and
Adelfio, 2011), i.e., it has a conditional intensity (seismic-
ity rate) of  the form

(1)

where i includes all events before t (possibly including
events outside the study region), t0 is the starting time, a,
d, and f are model parameters, and s(m) represents the
probability density function (p.d.f.) form of  the Guten-
berg-Richter (G-R) magnitude-frequency relation for
earthquake magnitudes larger than the magnitude
threshold mc, i.e.,

(2)

with b linked to the b-value by b = b ln 10. Such a for-
mulation enables us to maximize the likelihood estimate
of  the seismicity rate. 

Given an earthquake catalog, which is recorded as a
list in the form {(ti, xi , yi, mi) : i = 1, · · · , N } from spatial
region S and time interval [0, T], the likelihood has the
standard form (see, e.g., Ogata, 1988; Daley and Vere-
Jones, 2003; Zhuang et al., 2012)

(3)

where m (t, x, y) = m (t, x, y, m)/s(m) is the (t, x, y)-marginal
conditional intensity.

2.2 Space-time ETAS models
The ETAS model is a stochastic point-process

model, and is more complicated than the PPE model.
It builds on two well-known empirical laws: (1) the af-
tershock rate generally decays according to the Omori-
Utsu formula; (2) the aftershock area grows exponentially
with mainshock magnitude (Utsu and Seki, 1955), as
does the number of  aftershocks (Kanamori and Ander-
son, 1975), leading to the productivity as an exponential
function of  the magnitude. It also takes stationary seis-
micity and secondary aftershocks into account. In the
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model, we still assume that the magnitude distribution
is separable from the other components, with the same
density as specified by Equation (2). The expected num-
ber of  earthquakes in the unit space-time window cen-
tered at (t, x, y), given the observations before t, can be
written as

(4)

where µ(x, y) represents the spontaneous (background)
seismicity rate, which is a function of  spatial locations
but is constant in time, and p (t, x, y, m; ti , xi, yi, mi) is
the contribution to the seismicity rate by the ith event
occurring previously. In practice, the response function
p (t, x, y, m; ti , xi, yi, mi) is assumed to be separable and
dependent on the differences in time and spatial loca-
tions of  the initiating event, or explicitly,

(5)

where

(6)

is the expectation of  the number of  “children” (produc-
tivity) from an event of  magnitude m, with parameter
a describing the scaling of  the aftershock productivity
with the magnitude of  the triggering earthquake ac-
cording to eaM,

(7)

is the p.d.f. of  the length of  the time interval between
a “child” and its “parent”, c and p are constants, u is the
elapsed time since the main event (Omori-Utsu for-
mula), and f  (x, y; m) is the p.d.f. of  the relative loca-
tions between the “parent” and “children”. The spatial
density distribution of  aftershocks has been studied by
many authors. Felzer and Brodsky (2006) examined the
distance distribution of  earthquakes occurring in the
first five minutes after 2 ≤  M < 3 and 3 ≤  M < 4 main-
shocks, and found that their magnitude M > 2 after-
shocks showed a uniform power-law decay with slope
of  1.35, up to 50 km away from the mainshocks. From
this they argued that the decay with distance could be
explained only by dynamic triggering. Richards-Dinger
et al. (2010) found a similar pattern with a decay slope
of  1.24 ± 0.09 under the same conditions, although
they propose an alternative explanation for the decay.
More recently, Gu et al. (2013) confirmed a power law
decay in the spatial distribution of  aftershocks with an
exponent of  less than two. However, it must be noted
that these studies considered the density distribution of

the aftershocks as a whole, given the identification of  a
single mainshock in a sequence, whereas our models
deal with the p.d.f. of  the relative locations between
each event and every direct offspring in the se-
quence,without including the effect of  secondary trig-
gering. Here we consider two forms for the spatial
p.d.f.:

(8)
and

(9)

In the above formulations, the constant parameter
vector is i = (A, a, c, p, D, q) for ETAS I and i = (A, a, c,
p, D, q, c) for ETAS II. A further free parameter for both
ETAS I and ETAS II is the b value of  the magnitude
p.d.f. s(m) introduced in Equation (2). This parameter is
determined for the entire study area independently of
the other ETAS model parameters, as will be explained
later in this paper. In the ETAS II model, the parameter
c is independent of  a. A detailed description of  these
ETAS I parameters is given in Appendix B. Consider
that in ETAS I, the exponential term depending on
magnitude in Equation (6) is divided by the right hand
side denominator of  Equation (8) in the product of
Equation (5). The result is that the spatial p.d.f. is equal
to one at zero distance from the parent event, regard-
less of  its magnitude, as can be seen in Equation (23)
of  Appendix B. Therefore, the total number of  trig-
gered events from a triggering earthquake depends ex-
ponentially on its magnitude. In this case, assuming a =
1.0, ln 10 has the physical meaning that the number of
triggered events is proportional to the rupture area of
the triggering earthquake (see Console et al., 2006b;
Hainzl et al., 2008).

Among the parameters, A is the expected number
of  direct offspring produced by an event of  the thresh-
old magnitude, a quantifies the difference in the pro-
ductive efficiency from events of  different magnitude, c
and p are the parameters in the Omori-Utsu formula
for aftershock frequencies, D is the characteristic trig-
gering distance, q is the spatial decay coefficient, and c
is the spatial scaling factor. It is easy to see that both
models described above are branching processes with
“immigrants”: the background (immigrant) process is
a Poisson process; once an event occurs, whether it is
from the background process or triggered by a previ-
ous event, it triggers a non-stationary Poisson process,
specified by Equation (5), as its offspring process. This
model is also a type of  self-excitation process (Hawkes,
1971a,b). The difference between ETAS I and ETAS II is
as follows. In ETAS I, the scale factor for the produc-
tivity function is the same as the scaling factor for the
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spatial response function. ETAS I is used by Ogata
(1998), Console et al. (2003, 2006a,b, 2010b,c), Murru
et al. (2009), and Falcone et al. (2010). In this article, the
conditional intensity of  ETAS I given by Equation (8),
with g and f being normalized to be integrated to one,
is slightly different from its original form (See Appendix
A). ETAS II was developed by Zhuang et al. (2005) and
Ogata and Zhuang (2006), and is an improved version
of  the model in Ogata (1998). Zhuang et al. (2004) and
Zhuang (2006) found that ETAS II fits the data better
than ETAS I by using stochastic reconstruction and sec-
ond-order residual analysis. The formulation and para-
meterization were slightly different from Console et al.
(2003) and Ogata (1998), but were essentially the same:
here we normalize the spatial response kernel, and ex-
plicitly separate l(m) from other components. If  the
background seismicity rate µ(x, y) is known, the model
parameters, i, can be estimated by maximizing the like-
lihood function, which takes the same form as Equa-
tion (3).When the background seismicity rate is unknown,
we can still estimate the background and clustering pa-
rameters simultaneously by some iterative algorithms.We
apply the following iterative procedure to both models to
simultaneously estimate the model parameters and the
spatially varying background seismicity rate.

(1) Set up an initial background seismicity rate µ(x, y).
(2) Find the maximum likelihood estimate (MLE) of

model parameters, with assumed back-ground seismic-
ity rate. For ETAS I, the free parameters are (A, c, p, D, q),
and a is fixed. For ETAS II, the free parameters are (A, a,
c, p, D, q, c).

(3) Compute the background probability {i as the
ratio between the background seismicity component and
the total seismicity rate for any event i.

(4) Update µ(x, y) with the new estimated {{i: i = 1,
2, · · · , N } using Equations (24) and (25) for ETAS I and
ETAS II, respectively.

(5) Go to Step 2, and continue until the maximum like-
lihood parameters do not exhibit significant variations.

2.3 Forecasting procedure
Given the observation up to time t, to forecast whether

there will be one or more earthquakes of magnitude greater
than Mf in the next time interval T1, T2 in region S, the
probability that at least one event will occur is given by

(10)

and the expectation of  the number of  events occurring
in [T1 , T2] × S is given by

(11)

In the equations above, m(t, x, y, m) in [T1, T2] × S ×
[mf , ∞) is, in principle, calculated based on the observa-
tion up to time t. However, since we have no observa-
tions in the forecasting period [T1, T2], we use the
approximate observations up to T1, and assume that
there are no events occurring in between T1 and t. As
pointed out by Zhuang (2011), this procedure underes-
timates the number of  event occurrences because the
triggering of  earthquakes in the forecasting time inter-
val is not counted in this equation. This underestima-
tion becomes worse during the activating triggering
periods in the beginning stages of  aftershock sequences.
Such underestimation could be avoided by using simu-
lations. However, in this study, we do not consider using
simulations in order to make the comparison simpler,
since simulation is not implemented in the forecasting
procedure of  ETAS I. In this article, we adopted a fast
and neat computation method for both models:

(12)

As m (t, x, y) is a decreasing function of  time t to the
occurrence times of  subsequent events, and m (t, x, y) in-
creases after an event occurring in the forecasting time
interval, Equation (14) underestimates the occurrence
rate. In Equation (15), since m (T1 , x, y) > m (t, x, y) for all
t in [T1, T2], the above approximation compensates to
some degree the underestimation that is caused by the
assumption that, while calculating m (t, x, y), there are
no events occurring between T1 and t.

3. Scoring procedures
Given forecasts from different models, it is im-

portant to know which model performs the best in
forecasting. Many methods have been proposed for
testing and evaluating the significance of  forecasts
(e.g., Zechar, 2010; Zhuang, 2010). In this study, we
only consider the information score, also called the en-
tropy score (e.g., Kagan and Knopoff, 1977; Vere-Jones,
1998; Harte and Vere-Jones, 2005), which is a natural
way to evaluate the performance of  probability fore-
casts. Suppose that the whole space-time-magnitude
window for a forecast is divided into M cells of  equal
size and that the forecast gives a probability p-i that at
least one event occurs in the ith space-time-magnitude
cell; the reference model, usually taken as the Poisson
model, gives a probability of  pi. The binomial score for
cell i against the reference model is then defined as the
logarithm of  the likelihood ratio of  the forecasting and
reference models

(13)

SHORT-TERM EARTHQUAKE FORECASTING TEST

( , , )) ( , , , ) ,Pr expN T T S m t x y m dx dy dt dm0 1
ST

T

mf

1 2

1

2

# # 3 2 m= - -6 6@ @" *, 4####

( , , )) ( , , , ) .d dE N T T S m dm dt t x y m x yf

ST

T

m

1 2

f 1

2

# # 3 m=6 66 @ @@ ####

( , , )) e d dE T T T ,x,y x y.N T T S m 2 1 1

S

m m
f1 2

f c# # - m3 = - -b ^ ^
^

h h
h

6 6@ @" , ##

( / ) ( )
( )
( )

,log logB Y p p Y
p
p

1
1
1( )

i
b

i i i i

i

i
= + -

-
--

f



MURRU ET AL.

6

where Yi = 1 if  there is at least one event occurrence in
the ith cell, and, Yi = 0 otherwise. Similarly, the Poisson
score is defined by

(14)

where ni is the number of  events occurring in cell i, and
I (A) is the logical function, taking on a value of  one if
A is true, and zero if  A is false, pi,k and p-i,k are the prob-
abilities that the ith cell has k events occurring in it,
given by the forecasting model and the reference model,
respectively. The quantity eBi or eBi is the probability gain
for the ith interval. The total information score over all
cells is defined as

or (15)

The information gain per unit space-time-
magnitude volume is defined as

(16)

where V is the total volume of  the space-time-
magnitude range, Bi takes on the value of  Bi

(b) or Bi
(p) and

D is the size of  each cell. When Bi takes on the value of
Bi

(b), G is called the binomial information gain. Similarly,
G is the Poisson information gain when we use Bi

(b).
Such information gain varies when the division of  the
space-time-magnitude range of  interest changes, but
converges to a limit related to the forecasting potential

of  the forecasting model when the volume of  each cell
becomes infinitesimally small (Vere-Jones, 1998).

4. Data analysis and results

4.1 Data
The data used for this study are drawn from the

Italian Seismic Instrumental and Parametric Database
(ISIDE) of  INGV. Figure 1 shows the epicenter distri-
bution of  2,739 shallow earth-quakes with magnitudes
equal to or larger than 1.6 and depths ≤ 30 km, reported
by INGV from April 16, 2005 to March 15, 2009, and
3,007 events from March 16, 2009 to June 30, 2009 with
M ≥ 2.0 in the region to be tested with all the forecast
models (i.e., 12.4◦E–14.2◦E, 41.5◦N–43.1◦N). A prelimi-
nary analysis of  this seismic catalog shows contamina-
tion during the first time period by man-made explosions
from quarries, spatially concentrated around (42.0◦N,
13.0◦E), as shown in Figure 1. These 151 events are dis-
tinct, since their magnitudes are small (≤ 2.0) and they
occur during local working hours (between 7 a.m. and
5 p.m., UTC time). Thus, the catalog used for the learn-
ing phase does not include the quarry blasts, contains
2,588 events, and is considered complete for M ≥ 1.6.

4.2 Preliminary estimation results for the learning  phase
PPE model. When fitting the PPE model to earth-

quake data, two cutoff  magnitudes are used, 1.6 (2,588

Figure 2. Magnitude versus time: (a) for the learning (April 16, 2005 to March 15, 2009) (upper left panel) and (b) test (March 16, 2009 to June
30, 2009) (upper panel, right side) periods. All magnitudes are considered in the plots. The area considered spans 41.5◦N–43.1◦N and 12.4◦E–
14.2◦E. Magnitude-frequency plot: (c) for the learning (lower plot, left side) and (d) test (lower plot, right side) periods. The Mc is selected ac-
cording to the best combination of  the 95%–90% maximum curvatures where the observed data can be fit by a straight line.
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events) and 2.0 (907 events), while the target events are
still of  magnitude 2.0 and higher. That is, in Equation
(1), the value of i goes through all the events of  the cut-
off magnitude, whereas, in the likelihood Equation (3),
i goes through all the events of  magnitude 2.0 and
higher. We denote the model with cutoff  magnitudes
1.6 and 2.0 by PPE1.6+ and PPE2.0+, respectively.
The parameters obtained from fitting PPE1.6+ and
PPE2.0+ are listed in Table 1. Comparing between the
likelihoods, we can see that PPE1.6+ is better than
PPE2.0+, implying that using information from smaller
earthquakes improves the fitting and forecasting per-
formance. Figure 3a shows the map of  the estimated
seismicity rates from the PPE1.6+ model, using data
from before March 15, 2009.

Model ETAS I. For the learning period of  this
model, we use events recorded by INGV from April 16,
2005 to March 15, 2009, with M ≥ 1.6. The threshold
magnitude, for both triggering and triggered events, was
taken to be 1.6, and the test period is from March 16,
2009 to June 30, 2009, using events of  M ≥ 2.0 (see Figure
2). The b-value is assumed to be constant over the geo-
graphical area spanned by the catalog, and is estimated
independently of  the other parameters. We do not use a
spatially varying b-value, since the study region is already
quite small for justifying a subdivision. Instead, the
b-value was determined for the whole investigated area,
with the maximum likelihood method of  Aki (1965), to
be equal to 1.12 ± 0.02. The standard deviation estimate
is obtained following Shi and Bolt (1982).

Consequently, the b-value is also estimated inde-
pendently of  the other parameters, as it is equal to b ln
10. As described in Section 2.2, ETAS I has five free pa-
rameters (A, a, c, p, q) that can be estimated by the max-
imum likelihood method in Equation (3). However, we
fixed the value of  a to 1.0 ln 10 to reduce the number

of  free parameters, as done in Console et al. (2010a,c)
and Falcone et al. (2010). Thus, the effective number of
free parameters for ETAS I is four. Before determining
the best fit of  the above mentioned parameters, we de-
termine the scaling factor d in Equation (24), modeling
the seismicity as a pure Poisson process, so that no in-
formation about the parameters characterizing the in-
duced seismicity is necessary at this stage. In this work,
the optimal choice of  d is made by trial and error. For
the assessment of  this parameter, we used the method
of  comparing the independent components of  the seis-
micity distribution of  two different periods containing
roughly the same number of  events.

We maximized the likelihood of  the seismicity
contained in half  of  the INGV earthquake catalog
(from 2007 to 2009, M ≥ 1.6) under the time-indepen-
dent Poisson model obtained from the other half  of
the catalog (2005–2006). Here, d is modified until the
maximum likelihood is obtained for one of  the sub-
catalogs, using the smoothed seismicity derived from
the other subcatalog. The correlation distance d was
found to be 8 km, which is the value taken for the fol-
lowing analysis.

The maximum likelihood set of  the four free pa-
rameters of  ETAS I is found using the initial values of
the smoothed seismicity µ(x, y) by interpolation of  the
gridded distribution. The initial smoothed background
seismicity rate is then obtained for the whole data set.
Parameter b is probably influenced by the location er-
rors of  the epicenters reported in the catalog analyzed,
which is not taken into consideration in our simple
algorithm. Figure 4(a) shows the map of  the final
smoothed estimate of  the background rate, obtained
after four iterations using the iterative procedures de-
scribed in Step 3 of  Section 2.2. The maximum log- like-
lihood parameters obtained after the last iteration, for the

Model
a

# (events)
d

deg
f

# (events)
log L

PPE1.6+
PPE2.0+

9.542 · 10-3

1.497 · 10-2
3.363 · 10-3

3.858 · 10-3
6.469 · 10-8

3.360 · 10-8
-855.18
-875.14

Table 1. Parameters of  PPE models estimated by the maximum likelihood method (learning phase).

Model
A

# (events)
c

day a p
D

deg2 q c b

ETAS I
ETAS II-1.6+
ETAS II-2.0+
ETAS II-2.0m

0.2015
0.642
0.453
0.191

0.0202
0.00382
0.00511
0.00396

2.30 (fixed)
0.521
0.588
1.140

1.10
1.04
1.12
1.09

2.13 · 10-5

7.49 · 10-5

1.04 · 10-4

7.93 · 10-5

2.01
1.73
1.73
1.70

n.a.
0.910
0.755
0.736

2.58
2.60
2.60
2.60

Table 2. Parameters of  the ETAS models estimated by the maximum likelihood method (learning phase).



learning phase, are: A = 0.2015, D = 2.132 × 10−5, q =
2.009, c = 2.002 × 10−2, p = 1.105, and a = 2.30 (fixed)
(see also Table 2). The stability of  our maximum likeli-
hood algorithm was tested by starting from different
initial sets of  parameters, and checking that the same
results are always obtained. One might notice that the
parameters for ETAS I are super-critical, i.e., t = Ab/
(b − a) > 1 (see, e.g., Helmstetter and Sornette, 2002;
Zhuang et al., 2004 and Zhuang and Ogata, 2006, for
details on the criticality of  the ETAS model), unless a
truncated G-R magnitude-frequency relation is used,
or some other similar treatments are adopted. The di-
rect consequence of  supercriticality is that the total
number of  events grows, on average, exponentially
with time. When the forecasting interval is long, over-
forecasting of  seismicity might happen. However, a
supercritical process can still be used to forecast the af-
tershock production within a short period after a trig-
gering event. In this case, the same parameters can be
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Figure 3. Seismicity rate estimated using data before T2 = 1430 (at
00:00:00, March 16, 2009), using the PPE model (PPE1.6+). The
learning period is from April 16, 2005 to March 15, 2009. The color
scale represents the number of  events of  magnitude larger than
M2.0 occurring in a 1˚.1˚ cell per day.

Figure 4. Final estimates of  background rate n0(x, y) according to (a) ETAS I, (b) ETAS II-1.6+, (c) ETAS II-2.0+, and (d) ETAS II-2.0m using
data before T2 = 1430 (at 00:00:00, March 16, 2009). The learning period is from April 16, 2005 to March 15, 2009. The color scale represents
the number of  events of  magnitude larger than M2.0 occurring in cells 1˚.1˚ per day.
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used for simulation, since a supercritical ETAS process
needs some time to enter the state of  population ex-
plosion. In our tests, after each time step, the history of
the process is updated by observation, but not by events
simulated in previous steps. That is, events generated
by the supercritical parameters are not put into the
process history. With such a temporally piece wise
scheme, forecasting by the ETAS model remains sta-
ble. Model ETAS II. In the estimation of  ETAS II,
earthquake data from the region (7.9˚E–18.7˚E) and
(36.5˚N–47.1˚N) are used to obtain the seismicity rate.
The events in this larger region with respect to the
learning area of  ETAS I (that is, outside of  the L’Aquila
area) are used as auxiliary events to incorporate the trig-
gering effect from events outside into the contribution
to the occurrence rate inside this area (see also Wang et
al., 2010). That is, the events in this larger area are not
considered in the likelihood computation. However,
they are considered as events that could trigger other
events inside the test area. This is a different point from
ETAS I, arising from the independent development of

these two models. The target region (12.4˚E–14.2˚E,
41.5˚N–43.1˚N) is the same as in ETAS I. The learning
period is April 16, 2005 – March 15, 2009.

Three versions of  ETAS II are considered in this
study: (1) we fit the ETAS model to earthquake events
of  M ⩾ 2.0 (named ETAS II-2.0+ in Table 2); (2) we fit
the ETAS model to earthquake events of  M ⩽ 1.6
(named ETAS II-1.6+ in Table 2) and scale the forecast
seismicity rate for events of  M2.0+ using the G-R mag-
nitude-frequency relation; and (3) we fit the ETAS
model to earthquake events of  M ⩾ 2.0, but with events
of  1.6 ⩽ M < 2.0 as auxiliary events (named Model II-
2.0m in Table 2); that is to say, when calculating m(t)
using Equation (4), i is taken over all the M 1.6+ events
before t, and when computing the likelihood in Equa-
tion (3), i is only taken over the events of  M 2.0+. These
three versions are considered in order to understand the
role of  small events in forecasting large events, and to
verify the statement made by Helmstetter (2003) and
Helmstetter et al. (2005) that small events are impor-
tant in triggering large earthquakes. The MLE of  the

Figure 5. Examples of  expected daily seismicity rate forecast by ETAS II-2.0, at 00:00 UTC on the days: (a) March 17, 2009, (b) April 6, 2009
(1 hour and 32 minutes before the L’Aquila mainshock MW6.3), (c) April 7, 2009 (the second-largest shock in the Abruzzi region occurred on
April 7, 2009 at 17:47 UTC, with MW5.6), and (d) April 20, 2009. The color scale represents the number of  events in units of  magnitude larger
than 2.0 in cells of  1˚.1˚ per day.
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model parameters are listed in Table 2. Figures 4(b) to
4(d) show maps of  background rates estimated using
ETAS II-1.6+, II-2.0+, and II-2.0m, respectively.

Daily forecasts. We assume that each forecast is
for seismicity starting at 0:00 and ending at 24:00 (UTC)
each day. Figure 5 gives the forecasting maps of  ex-
pected intensity of  events in units of  events/day/deg2

for four time windows, according to ETAS II-2.0m. 
Figure 5(a) shows the expected daily seismicity rate
forecast for March 17, 2009. Just before the occurrence
of  the mainshock (April 6, 2009), the density map is
similar to the background seismicity rate (Figure 4d),
taking into account the difference in the color scale for
rate density.

After the occurrence of  the mainshock, the seis-
micity in the L’Aquila region is dominated by after-
shocks (Figure 5c). If  the forecast is carried out shortly
after the mainshock, it is possible that the forecast can
be improved. In Figure 5(c), this feature has been well
captured by ETAS II-2.0m. Two weeks after the main-
shock has occurred, the rate of  aftershocks decays to a
low level (Figure 5d), but is still much higher than the
average level (Figure 3).

5. Evaluation of  forecast performance
The region to be tested for ETAS I and II for tem-

poral and spatial occurrence is (12.4˚E–14.2˚E) . (41.5˚N–
43.1˚N). The area has been divided into cells of
0.1˚.0.1˚. The test period is from March 16 to June 30,
2009 for events of  M ≥ 2.

5.1 Predictability of  the mainshock
An important feature is that a foreshock swarm,

consisting of  50 earthquakes of  M ≥ 2.0, occurred be-
fore the mainshock (April 2009). This raises the question
of  how the mainshock can be forecast by the models
considered in this study. On the day of  the mainshock,
PPE2.0+, PPE1.6+, ETAS I, ETAS II-1.6+, ETAS II-2.0+,
and ETAS II-2.0m, give an expected occurrence rate on
the order of  a few events per day for the occurrence of
events of  M ≥ 2.0 in the test region (Figure 6, top panel).
Model ETAS I seems to give the highest estimate. How-
ever, when we consider its score for all the days before
the mainshock, the probabilitygain becomes much
lower, using PPE2.0+ as the reference model. The total
conditional probability computed by ETAS I for an
earthquake of  magnitude M ≥ 5.0 during the week pre-
ceding the April 6 mainshock was 0.39%. This probabil-
ity was about 20 times larger than the background
probability, because of  the occurrence of  some fore-
shock activity. The expected instantaneous occurrence
rate density increased by several times in the few hours
before the mainshock. However, this level still seems

low for justifying the implementation of  risk mitigation
measures. Here we refer to Van Stiphout et al. (2010) for
further discussions on risk mitigation.

It is arguable whether a reliable prediction can be
made based on these foreshocks. However, the answer
seems to be that we cannot obtain more information
than what can be forecast by a clustering model like the
ETAS model. The same has been reached by many re-

searchers (see, e.g., Felzer et al., 2004; Helmstetter et
al., 2003; Zhuang et al., 2008; Christophersen and
Smith, 2008; Marzocchi and Zhuang, 2011).

5.2 Predictability of  the mainshock
In this subsection, we evaluate the temporal per-

formance of  the forecasts made using all six models.
The results are shown in Figure 7. As discussed in Sec-
tion 5.1, we first divide the target space-time range into
cells of  size 1(day) × S × [2.0, ∞), where S is the test re-

Figure 6. Comparison between forecast and observed rates during
the test period (March 16 – June 30, 2009) for events of  M ≥ 2.0, per
day. The scale of  y-axis is logarithmic, with the value 0.1 considered
to be equivalent to 0. The top and bottom panels show the periods
March 25 to April 9, 2009, and March 25 to July 1, 2009, respectively.
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gion under consideration.
The daily forecasts are given as the expected rate in

each of  the cells. Figure 6 shows the occurrence rates
forecast by all these models, and the actual observations
of  daily number of  earthquakes during the testing pe-
riod starting on March 16, 2009. Among them, the PPE
models start at a rate similar to that of  the ETAS mod-
els, and with some increments in the forecast rates after
the mainshock due to the dramatic increase of  the
number of  events in the aftershock sequence. All the
ETAS models catch the patterns of  the temporal varia-
tion of  the aftershock rates with slight differences, ex-
cept that the curve of  earthquake numbers forecast by
ETAS I is smoother than those produced by ETAS II. A
problem that arises when modeling the occurrence of
relatively small events is that these small events are gen-
erally missing from the catalog after a large mainshock,
so the completeness magnitude increases significantly
after the large mainshock. Consequently, one effect of
missing early aftershocks after the mainshock is that
earthquake forecast models overestimate the observed

number of  events during the first few hours or days fol-
lowing the mainshock.

Another effect of  missing early aftershocks in the
real catalogs is the underestimation of  the expected sub-
sequent seismicity rate (e.g., Helmstetter et al., 2006).
However, none of  these effects can be clearly noted for
the catalog used for the L’Aquila mainshock, as can be
seen in Figure 6.

Assuming the PPE2.0+ as the reference model, Fig-
ure 7 gives the information score for all the models for
each day. By comparing the performance of  the various
models, and also making use of  Table 3, we observe the
following: 

(1) Inclusion of  smaller events improves the fore-
casting results. As mentioned in a previous section,
PPE1.6+ and ETAS II-20m both work better than the ver-
sions for events M ⩾ 2.0.

(2) Both types of  ETAS models are superior to the
PPE models, with binomial or Poisson scores of  one to
two orders higher.

(3) ETAS I is better at forecasting the number of

SHORT-TERM EARTHQUAKE FORECASTING TEST

Poisson information scores

M 2.0+ M 3.0+ M 4.0+

Model EC NEC Tot. EC NEC Tot. EC NEC Tot.

PPE1.6+ 215.79 0.31 216.10 12.82 -0.23 12.59 1.67 -0.06 1.60

ETAS I 7992.22 -5.78 7986.44 666.64 -22.21 644.44 95.18 -7.50 87.68

ETAS II-1.6+ 6860.19 -4.50 6855.69 549.77 -17.27 532.50 75.67 -5.24 70.42

ETAS II-2.0+ 7322.93 -1.08 7321.84 593.74 -9.35 584.39 81.88 -3.76 78.11

ETAS II-2.0m 7541.82 -3.43 7541.82 617.48 -14.71 602.77 85.19 -5.08 80.11

Table 3. Information gains compared to Model PPE2.0+ for each model. The boldface fonts show the best models in the corresponding cat-
egory. EC stands for “event cell” and NEC stands for “non-event cell”.

Binomial information scores

M 2.0+ M 3.0+ M 4.0+

Model EC NEC Tot. EC NEC Tot. EC NEC Tot.

PPE1.6+ 0.83 0.31 1.14 2.96 -0.23 2.72 1.17 -0.06 1.1

ETAS I 16.15 -5.78 10.37 71.17 -22.21 48.96 35.90 -7.50 28.39

ETAS II-1.6+ 18.12 -4.50 13.62 66.63 -17.27 49.36 31.00 -5.25 25.75

ETAS II-2.0+ 14.09 -1.09 13.01 56.02 -9.35 46.67 30.11 -3.76 26.35

ETAS II-2.0m 17.87 -3.43 14.44 64.81 -14.71 50.10 32.13 -5.08 27.05



earthquakes, while the ETAS II models are better at fore-
casting Yes/No for M 2.0+ or 3.0+.

(4) Direct fitting to M ≥ 2.0 works better than using
models that fit to all events of  M ≥ 1.6. 

However, an adjusted ETAS model (II-2.0m), which
fits earthquakes of  M 2.0+ but considers the triggering ef-
fect from events of  magnitudes between M 1.6 and M 2.0,
yields better forecasts than its counterpart II-2.0+. Possi-
ble reasons for this are: (1) the triggering effect from small
earthquakes is important and cannot be neglected, as
shown by Helmstetter et al. (2005); (2) since events of mag-
nitudes M 1.6 to M 2.0 comprise a major proportion of  the
data set, when fitting ETAS II-1.6+ to the data, the contri-
butions to the occurrences of  these events from events of
similar and larger magnitudes are considered, while events
smaller than M 1.6 are not, yielding a biased estimate.

6. Discussion and conclusions
In Section 5.2, we saw that all the ETAS models

used in this study underestimate the occurrence rate

soon after the mainshock and during the aftershock se-
quence. One way to improve the performance of  an
ETAS model, especially in the case of  a long aftershock
sequence, is to update the maximum likelihood pa-
rameters at the end of  each day, just before the com-
putation of  a new forecast for the following day.

Another possible cause of  the systematic underes-
timation of  occurrence rate during an aftershock se-
quence could be that our ETAS models were fit to a
learning data set of  relatively moderate seismic activ-
ity, since there are no earthquakes of  magnitude 5.0+ in
the catalog before March 15, 2009. In this case, our max-
imum likelihood (ML) parameters, applied to larger
magnitude mainshocks, are in some sense the results
of  an extrapolation, which can easily cause large biases.

As to the issue of  forecasting the April 6, Mw 6.3
mainshock, the results reported in Section 5.1 show that
the occurrence of  foreshock activity some days before
the mainshock raised the probability gain up to an order
of  20, using the ETAS I model. This does not appear to
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Figure 7. Temporal variations of  daily information gains for each forecasting model, with PPE2.0+as the reference model: (a) binomial in-
formation gains for earthquakes of  magnitudes 2.0+, (b) binomial information gains for earthquakes of  magnitudes 3.0+, (c) Poisson infor-
mation gains for earthquakes of  magnitudes 2.0+, and (d) Poisson information gains for earthquakes of  magnitudes 3.0+.
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be a great achievement towards the potential use of  this
information for civil protection purposes.

Considering that in this case, as often occurs before
strong earthquakes, significant foreshock activity was ob-
served just a few hours before the mainshock after mid-
night, a suitable strategy could be to issue forecasts in
automatic and semi-real time whenever significant seis-
mic activity is observed, instead of  just once a day.

In this study, the most significant feature is that be-
fore the mainshock, all ETAS II-type models performed
better than ETAS I, while in the aftershock period,
ETAS I obtained a much better Poisson score than all
the ETAS II models. We can see that ETAS I is a sub-
class of  ETAS II. This means that the best model in I
should not be able to outperform the best model in II.
One possibility is that the seismicity behavior changes
before and after the occurrence of  the mainshock. To
test whether the seismicity pattern changes before and
after the mainshock, we fit the space-time ETAS II-2.0+
to the seismicity after the mainshock. In this case, the
ML parameters are A = 0.515 event, c = 0.0143 day, a =
0.918, p = 1.20, D = 8.96 × 10−5 deg2 , q = 1.89, and
c = 0.508. Clearly, the a-value is much larger than the
one used for forecasting in the ETAS II models (a =
0.588), which is obtained by fitting ETAS II-2.0+ to the
data before March 15, 2009. This also explains why
ETAS I with a high a-value can produce a better Pois-
son score. The above comparison covers only a very ac-
tive period. To make an overall forecast comparison, we
should carry out a comparison for much longer data
set. However, during the quiescent period, ETAS I be-
gins to over-perform other models.

One might ask: What is the authors’ advice re-
garding the two information gain metrics? Is one pre-
ferred under certain conditions? In our opinion, there
are no problems related to the gain metrics. For the
Poisson score, the problem is caused by the assumption
that the forecast number of  events belong to a Poisson
distribution, with the mean being the integral of  the
conditional intensity function. This is true for Poisson
type models, such as the PPE models used in this study,
but the ETAS model is a clustering model, with a sto-
chastic conditional intensity, which increases once an
event occurs. That is to say, the distribution of  number
of  events in the forecasting interval has a variance
much larger than that of  a Poisson distribution with the
same rate. This problem has been much discussed by
Lombardi (2014). For the binomial score, such a prob-
lem does not exist. The zero and one probabilities are
exactly given by Equation (10). In this respect, it seems
the binomial score should be preferred.

In this study, we do not consider the performance
of  these models in forecasting spatial locations, since

the area is quite small, 1.1˚ by 1.5˚, while the location
error is several kilometers. Moreover, all the models use
the G-R magnitude-frequency relation for the magni-
tude distribution, independent of  the time and location
components. Thus, there are no differences between
them in forecasting the magnitude distribution of  fu-
ture events.

In summary, to achieve better forecasts, as well-
known from the existing literature on the ETAS model,
the training catalog should contain some typical exam-
ples of  similar magnitudes. If  not, it would be better to
use a typical set of  parameters from a nearby region or
from a region of  similar tectonic structure or equiva-
lent seismicity levels. Other lessons from this study are
as follows. (1) Making use of  the earthquakes of  lower
magnitude works better than using only events larger
than the target magnitude threshold. (2) Parameters
should be updated during the forecast process, if  possi-
ble. (3) Forecasts should be updated just after the oc-
currence of  potential foreshock activity, whenever
significant moderate earthquakes are observed.
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Appendix A: Original form of  ETAS I
Although essentially the same, the conditional in-

tensity function for ETAS I takes a slightly different form
from Console et al. (2010a) and Falcone et al. (2010). The
original form is

(17)

where fr is the fraction of background events over the total
number of  events. The background seismicity rate is

(18)

where b = b ln 10, and mc is the threshold magnitude of
the analysis. The triggering kernel is factorized into three
terms depending on time, space, and magnitude, as:

(19)

where K is a constant parameter, and f (x, y, m) and h(t)
represent the space and time distributions, respectively.

The spatial distribution of  the triggered seismicity
is modeled by a function with circular symmetry
around the point of  coordinates (xj , yj). This function
can be written in polar coordinates (r, i) as:

(20)

where r is the distance from point (xj, yj), q is a free pa-
rameter modeling the decay with distance, d0 is the
characteristic triggering distance of  an earthquake of
magnitude m0, and a' is a free parameter describing the
productivity for triggering earthquakes. For the time de-
pendence, the Omori-Utsu formula is adopted:

(21)

where c and p are characteristic parameters of  the process.
The set of  free parameters for ETAS I actually es-

timated by Falcone et al. (2010) are:
(1) K (productivity coefficient),
(2) d0 (characteristic triggering distance),
(3) q (exponent of  the spatial distribution of  triggered
events),
(4) c (time constant of  the Omori-Utsu formula), and
(5) p (exponent of  the Omori-Utsu formula).

In the present study, as well as in Falcone et al.
(2010), the value of  the a' parameter is fixed to one to
reduce the number of  free parameters, taking into ac-
count that in Falcone et al. (2010) a' = 1 because decimal
exponentials are used in their algorithm (see Equation
(25)). This parameter is the coefficient of  the expo-
nential relation between the magnitude of  triggering
earthquakes and their average triggering distance. The

b-value is assumed to be constant over the geographical
area spanned by the catalog, and is estimated independ-
ently of  the other parameters. In the estimation proce-
dures, an iterative process is applied to ETAS I by Falcone
et al. (2010), done in five steps, in order to have a spatial
distribution that does not include the triggered compo-
nent of  the seismicity and still preserves the total seismic
moment released by the seismicity, which is propor-
tional to the total number of  earthquakes.

Comparing Equation (17) to Equation (8), the pa-
rameters c and p are the same, D = d2

0, a' = a ln 10, and

(22)

Please note that, since Kd2
0 and A are both dimen-

sionless quantities, it is not necessary to change the units
of  c and d0 when converting K to A using the above
equation.

Appendix B: Parameters and background rate esti-
mation

Zhuang (2011) compiled a summary of  the ap-
proaches for assessing background rates, and classified
them as follows: (1) using a rate proportional to the total
seismicity rate of  all events (Console and Murru, 2001;
Console et al., 2003) or only of  the large events in the cat-
alog (Musmeci and Vere-Jones, 1986); (2) using a declus-
tering method to decluster the catalog and using the total
rate in the declustered catalog as the background rate
(Ogata, 1998 Helmstetter et al., 2006; Werner et al., 2011);
(3) weighting each event by the probability that it is a
background event (Zhuang et al., 2002, 2004; Console et
al., 2010a); and (4) the method introduced by Ogata
(2004), which is a Bayesian smoothing procedure on tes-
selation grid to simultaneously estimate the spatial vari-
ation of  the background and the model parameter. In this
study, the third category of  methods was used for mod-
els ETAS I and II, but with slight differences.

First, we estimate the background probability
through the relative contribution of  the background
rate to the total seismicity rate, i.e., 

(23)

The background rate is estimated by applying a
smoothing technique to the whole catalog, with all
the events weighted by their corresponding back-
ground probabilities.

In ETAS I, a smoothed grid kernel method is
used to estimate the background intensity, i.e., the
value of  n(x, y) is computed at each node k of  a reg-
ular grid using the method introduced by Frankel
(1995) and adopted by Console and Murru (2001) and
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subsequent works:

(24)

where {i is the background probability for the ith event,
I (i ∈ Cl) is one when event i is in cell Cl, and zero oth-
erwise, Dkl is the distance between the centers of  cells
k and l, and d is the bandwidth. In order to implement
Equation (24), one has to select a d value; larger d val-
ues will lead to a smoother distribution (at each grid
node) and background rate, and to more contamina-
tion between different areas. The rate density n(x, y) at
any point is obtained by linear interpolation among the
nearest grid nodes. The bandwidth d is determined using
cross-validation procedures, i.e., maximizing the likeli-
hood of  the seismicity contained in half  of  the catalog
under the model obtained from the other half.

In ETAS II, we use a variable kernel estimate,

(25)

where Zd is the Gaussian kernel with d as the bandwidth,
i goes through all of  the events in the whole process, T
is the length of  the time period of  the process, and di
represents the varying bandwidth calculated for each
event i in the following way. Given a suitable integer np,
find the smallest disk centered at the location of  the i-th
event which includes at least np other earthquakes, and
is larger than some minimum value (e.g., a distance
within 0.02˚, which is of  the order of  the location error)
and let this minimum radius be di (e.g., Silverman
(1986), Chapter 5).
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