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Short-term time dependent model  
(epidemic model) I

Every event is potentially triggered by all the

previous events and every event can trigger

subsequent events according to their relative

time-space distance

A definition of the words foreshock, 

mainshock and aftershock is not necessary



Time dependent model  
(epidemic model) II
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where

i ( x,y,t,m ) = K (x,y,xi,yi ) g(t-ti ) h(m)



Time dependent model  
(epidemic model) III

(x,y,t,m) = fr · 0 (x,y,m) +    K f(x,y,xi,yi) g(t-ti) h(m)
ti<t

Time independent distribution of the epicenters and 

magnitude for the spontaneous seismicity

0 ( x, y, m ) = m0 ( x, y ) b e  b ( m-m
0
)

where m0 is the completeness magnitude of the

catalog
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A smooth geographical distribution is computed 

at each node k of a regular grid through the 

method introduced by Frankel (1995):

The rate density 0(x,y) at any point is obtained by 

linear interpolation among the nearest grid nodes.

The free parameter d is determined maximizing the 

likelihood of the seismicity contained in half catalog 

under the model obtained from the other half.



Learning period: 17/04/2005-15/03/2009

1431 days, 2588 events M ≥1.6



Learning period: 17/04/2005-15/03/2009

Initial spatial distribution ( function m0 (x, y) )

(smoothing distance d = 8 km)
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Time dependent model  
(epidemic model) IV

Spatial distribution (kernel) of triggered events

(x,y,t,m) = fr · 0 (x,y,m) +    K f(x,y,xi,yi) g(t-ti) h(m)
ti<t
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Temporal distribution of triggered events 

(Omori –Utsu law)

g( t-ti  ) =  ( p-1 ) c( p-1 ) ( t -ti+c ) -p ( p  1 )

Time dependent model  
(epidemic model) V

(x,y,t,m) = fr · 0 (x,y,m) +    K f(x,y,xi,yi) g(t-ti) h(m)
ti<t



Magnitude distribution of triggered events

h(m) = b e  b ( m-m
0

)

Time dependent model  
(epidemic model) VI

(x,y,t,m) = fr · 0 (x,y,m) +    K f(x,y,xi,yi) g(t-ti) h(m)
ti<t



We find the maximum likelihood set of free parameters

using the initial distribution of the smoothed seismicity

0(x,y,m).

We define the probability of independence pi as the ratio

between the independent component fr·0(xi,yi,mi) and the

composite rate density (xi,yi,mi,ti) for any event i.

Then we compute a new distribution of 0(x,y,m)

introducing the weights pi to count the number of events

for each cell in the Frankel (1994) algorithm. The new

distribution is normalized to the observed total number of

events

The new smoothed distribution is used in a new maximum

likelihood best fit of the free parameters, and so on...

Iterative adjustment of the background component

spatial distribution



Values obtained for the parameters of the epidemic model 

in the iterative adjustment of the background seismicity

Initial Step 2 Step 3 Step 4

K 0.2383 0.2383 0.2384 0.2382

d0
0.5215 0.5215 0.5215 0.5215

q 2.009 2.009 2.008 2.009

c 0.02004 0.01998 0.02005 0.02001

p 1.1047 1.1047 1.1047 1.1047

 1.000 1.000 1.000 1.000

fr
0.4796 0.4803 0.4796 0.4806

logL 26954.2 27075.0 27080.0 27079.1
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Learning period: 17/04/2005-15/03/2009

final spatial distribution ( function m0 (x, y) )

(smoothing distance d = 8 km)
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Learning period: 17/04/2005-15/03/2009

Comparison between the inital and final 

spatial distribution (ev/sq_deg/day)



We draw the cumulative distribution of pi over the time 

spanned by the catalog, expecting that it should be 

closer to a linear trend.
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We define a parameter Dn to express  the mismatch 

between the actual cumulative distribution and the 

expected linear trend with the same final value:

(  0
ˆmax ( )n nD F i F i 

( ˆ
nF i

( 0F i

where is the observed value of the normalized 

cumulative distribution at the event i

and is the theoretical normalized linear trend,

so that (  ( 0
ˆ
nF n F n



KS-test

Raw catalogue Dn = 0.108

Declustered catalogue Dn = 0.019

Critical value       Result

for Dn        Raw     Decl.

20% 0.023 Reject   Accept

10% 0.026 Reject   Accept

5% 0.029       Reject   Accept 

1% 0.034       Reject   AcceptL
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Synthetic catalog

1425 days, 3759 events M ≥1.6



Comparison between the real and synthetic catalogues

2588 events M ≥1.6 3759 events M ≥1.6
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Comparison between the real and synthetic 

spatial distribution (ev/sq_deg/day)



Comparison between the ML best fit parameters

for the real and synthetic catalogues

Real Synthetic

K 0.2382 0.1697

d0
0.5215 0.5224

q 2.009 2.008

c 0.02001 0.03495

p 1.1047 1.2177

 1.000 1.000

fr
0.4806 0.3286
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Testing period: 16/03/2009-30/06/2009

7149 events M ≥1.6



Comparison between the spatial distributions

in the learning and testing periods 

17/04/2005-15/03/2009 16/03/2009-30/06/2009



Applying the ETAS model with the parameters

obtained from the ML best fit in the learning 

phase, we obtain a very large performance 

factor with respect to the time-independent 

Poisson model.

The average log-performance factor per event 

(information gain) is equal to 50,241/7,149 = 

7.03 (natural logarithms are used). 

It means that for each event the average 

probability gain is of the order of 1,000.

Overall results
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Days after 16 March 2009



The total conditional probability for an earthquake

of magnitude M≥5.0 during the week preceding

the 5 April mainshock was 0.39 %. 

This probability was about 30 times larger than 

the background probability, due to the occurrence 

of some “foreshock” activity. However, this level 

seems still low for justifying the implementation of 

effective risk mitigation measures.

The expected instantaneous occurrence rate 

density increased by several times in the few 

hours before the mainshock

Before the mainshock



The forecasted number of events with M≥5.0

was systematically smaller than the real one 

in the first month of the aftershock sequence. 

Afterwards, the forecasted and observed 

occurrence rates became more similar.

After the mainshock



CONCLUSIONS

The ETAS model allows statistical declustering of a seismic 

catalogue and the simulation of catalogues with characteristics 

similar to the real ones.

The retrospective application of the ETAS model to the 2009 

seismic sequence occurred in Central Italy has shown its 

capability of forecasting the behaviour of seismic activity 

during an aftershock sequence.

However, despite the fairly high probability gain achieved 

through the ETAS model, the forecast of main shocks 

preceded by moderate foreshocks is characterized by rather 

low occurrence rates for magnitudes larger than 5.0.   



Thank you !


