In 2004 and with the extension of the Sarno basin, more than 2000 seismic events have been relocated by the network of the Sarno basin (Cancani et al., 2006). In 2005, an additional 2D seismic section was performed and the results were used to test the reliability of the 2D dynamic model (Fig. 8). The results show that the model is able to reproduce the observed seismicity and that it is able to identify the main tectonic features of the area, such as the Apenninic and the Southern Apennines. The model is also able to explain the distribution of seismicity and the distribution of the hypocenters, which is consistent with the results of previous studies.

Conclusions

The seismicity of Southern Italy is characterized by a complex tectonic setting that includes the Apenninic and the Southern Apennine areas. The seismicity is concentrated in the two main seismic zones, the Apennine and the Southern Apennine, and is characterized by a high level of seismic activity. The model is able to explain the distribution of seismicity and the distribution of the hypocenters, which is consistent with the results of previous studies. The model is also able to explain the distribution of seismicity and the distribution of the hypocenters, which is consistent with the results of previous studies.

In conclusion, the model is able to explain the distribution of seismicity and the distribution of the hypocenters, which is consistent with the results of previous studies. The model is also able to explain the distribution of seismicity and the distribution of the hypocenters, which is consistent with the results of previous studies.

References

Cancani, R. S. Scarroncina and A. Longo (2001). The strain energy of Italy and surrounding areas from seismic strain reduction. New Aseismic, Rev. Geol. 6, 325-379.

Cancani, R. S. Scarroncina and A. Amato (2001). Characterization of crustal structures in central and southern Italy. New Aseismic, Rev. Geol. 6, 325-379.


Cancani, R. S. Scarroncina and A. Longo (2001). The strain energy of Italy and surrounding areas from seismic strain reduction. New Aseismic, Rev. Geol. 6, 325-379.

Cancani, R. S. Scarroncina and A. Amato (2001). Characterization of crustal structures in central and southern Italy. New Aseismic, Rev. Geol. 6, 325-379.


Cancani, R. S. Scarroncina and A. Longo (2001). The strain energy of Italy and surrounding areas from seismic strain reduction. New Aseismic, Rev. Geol. 6, 325-379.

Cancani, R. S. Scarroncina and A. Amato (2001). Characterization of crustal structures in central and southern Italy. New Aseismic, Rev. Geol. 6, 325-379.
