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Abstract 

Because paleoseismology can extend the record of earthquakes back in time up to 

several millennia, it represents an opportunity to study how earthquakes recur 

through time and thus to provide innovative contributions to seismic hazard 

assessment. Based on a database of recurrence from paleoseismology  we collected 

19 sequences with 5 up to 14 dated events on a single fault. By using the age of the 

paleoearthquakes, with their associated uncertainty, and the historical earthquakes, 

we tested the null hypothesis that the observed inter-event times come from a 

uniform random distribution (Poisson model). We used the concept of likelihood for 

a specific sequence of events under a given occurrence model. The difference dlnL 

of the likelihoods estimated under two hypotheses gives an indication of which 

between the two hypotheses fits better the observations. To take into account the 

uncertainties, we used a Monte Carlo procedure computing the average and the 

standard deviation of dlnL for 1000 inter-event sets by choosing the occurrence time 
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of each event within the limits of uncertainty and estimating the probability that a 

value equal to or larger than a observed dlnL comes by chance from a Poisson 

distribution of inter-event times. These tests were carried out for the Log-normal, 

Gamma, Weibull, Double-exponential and Brownian Passage Time (BPT) 

distributions. Our results show that a renewal model, associated with a time 

dependent hazard, and some kind of predictability of the next large earthquake on a 

fault is significantly better than a plain time-independent Poisson model only for 

four, out of the 19 sites examined in this study. The lack of regularity in the 

earthquake occurrence for more than 30% of the examined faults can be explained 

either by the large uncertainties in the estimate of paleoseismological occurrence 

times or by physical interaction between neighbouring faults. 

 

In the last decades the use of probabilistic, long-term time-dependent models of 

earthquake occurrence has grown up in the context of seismic hazard analysis. The 

basic idea for time-dependent models is universally known as the elastic rebound 

theory, initially proposed by Reid (1910) in the context of his study of the great San 

Francisco, 1906 earthquake: stresses which cause earthquakes are slowly built up by 

plate movements until the stress or deformation energy reaches a critical value, at 

which a rupture occurs. Later on, in connection with the development of the plate 

tectonics theory, this idea has been worked out by Mogi (1968) in its definition of 
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the seismic gap of the first kind. A seismic gap of the first kind is a segment of plate 

boundary, for which the time elapsed since its latest rupture is significantly long 

relatively to that of the neighbouring segments. According to a very popular and 

intuitive view, a seismic gap is likely to rupture again generating a large earthquake 

in the near future. 

An extension of the seismic gap hypothesis can be recognized in the characteristic 

earthquake model (Schwartz and Coppersmith, 1984; Wesnousky, 1994). According 

to this model, strong earthquakes have a general inclination to repeat themselves 

along the same fault segment or plate boundary. The occurrence of a characteristic 

earthquake ruptures the entire segment and relieves tectonic stress within the 

segment. Therefore, the characteristic earthquake hypothesis cannot be taken 

independently of its implications on the time occurrence of earthquakes. In fact, if 

one assumes a constant average slip rate between two plates along their boundary, 

and a fairly constant slip and stress drop released by each characteristic earthquake 

on a fault, the regularity of the inter-event time is just a simple physical 

consequence. According to this hypothesis, the earthquake hazard is small 

immediately following the previous large earthquake and increases with time since 

the latest event on a certain fault or plate boundary. Hence, the earthquake 

occurrence can be regarded as a quasi-periodic process (McCann et al., 1979; 

Shimazaki and Nakata, 1980; Nishenko and Buland, 1987). 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

The controversy whether quasi-periodic or uniform inter-event time  distributions 

apply to individual faults has been going on many years, and the choice affects not 

only earthquake probabilities and seismic hazard calculations, but also our 

understanding of the physics of earthquakes. This debate was partly developed 

through discussions by Nishenko and Sykes (1993), Jackson and Kagan (1993), Kagan 

and Jackson (1991, 1995), and Rong et al. (2003). The controversy did not have a 

clear conclusion and is ongoing. 

Most recently, in the debate on the preference between a characteristic earthquake 

hypothesis and a simpler time-independent hypothesis, Parsons and Geist (2009) 

applied a simulator-based model.  Their simulations showed that the Gutenberg-

Richter distribution can be used as a model for earthquake occurrence on sub-

segments of different size on individual faults in probabilistic earthquake 

forecasting. 

In this study, we assume, as a working hypothesis, the characteristic earthquake 

model, and its periodicity. In order to assess the suitability of this hypothesis for its 

possible application to seismic forecasting, a probabilistic approach is used for 

comparison with a null hypothesis. In formulating this hypothesis we disregard any 

possible implication deriving from the geometry and other physical parameters of 

the earthquake sources. Earthquake occurrence is simply regarded as a point 

process, and the inter-event time is modelled by its probability density function 
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(pdf). In this respect, the null hypothesis is represented by an earthquake process 

without memory (described by a uniform Poisson process). For a uniform Poisson 

model, whose pdf is a negative exponential function, only one parameter, the inter-

event time, is necessary for a complete description (Appendix A.1). Conversely, the 

gap hypothesis needs a more complicated model (i.e., the renewal models) whose 

pdf contains a further free parameter, affecting the shape of the distribution in 

terms of its periodicity. Typically, the pdf for a renewal model exhibits a maximum 

for inter-event times close to its expected recurrence time. 

This work is aimed at assessing whether a collection of available occurrence times 

for sequences of strong earthquake in different areas of the world allows the test of 

the characteristic earthquake hypothesis described by the most popular renewal 

models, against a plain time-independent Poisson hypothesis. In  this respect, this 

work can be considered a development of the paper published by Console et al., 

(2002). Assuming the Poisson hypothesis, their method was based on the 

comparison of the coefficient of variation observed for real seismic sequences with 

the distribution of the same parameter computed from a large number of 

simulations. In this case the comparison is based on the likelihood function 

computed for the real and simulated sequences. 

 

1. METHOD 
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Any earthquake forecasting hypothesis should be objectively and unequivocally 

formulated so as to allow its validation through a stochastic procedure (Console, 

2001). In the very popular Bayesian approach two hypotheses are compared: the 

first represents a commonly accepted conventional hypothesis (the null hypothesis), 

considered as a reference model, and the second is an alternative hypothesis. None 

of the hypothesis is claimed to be true, but any of them can be rejected with a given 

confidence level if its likelihood resulting from a set of observations is lower than a 

certain value. 

In our study, as in many others of the past (e.g. see Kagan and Jackson, 1996; 

Console, 2001; Luen and Stark, 2008; Console et al., 2010), the reference model (the 

null hypothesis) of earthquake occurrence is the exponential distribution of the 

inter-event times in the continuous domain, also known as the Poisson model. The 

alternative models belong to the category of the renewal models, among which we 

consider the Log-normal, Gamma, Weibull, Double-exponential and Brownian 

Passage Time (BPT) distributions. 

The comparison between these models and the Poisson model has been carried out 

introducing the concept of likelihood, L, of a realization of a stochastic process 

under a given assumption. The function L is defined as the hypothetical probability 

that a set of events would yield a specific outcome under a specific hypothesis. 
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The log-likelihood function is evaluated for both the null hypothesis (ln LP) and the 

renewal hypothesis (ln LR). Regarding the first one, described by the exponential 

distribution, ln LP is defined as: 

0( )1
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where N is the number of observed events, t0(N) is the occurrence time of the most 

remote earthquake of the sequence, and Tr, is the mean inter-event time (or 

recurrence time). 

The ln LR of the renewal hypothesis, described by any of the renewal models, is: 
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where t(j) is the time difference, or inter-event time, between the j-th and the 

(j+1)-th event and f(t) is the adopted Probability Density Distribution (pdf). 

As stated above, in this study we consider five kinds of statistical distributions, i.e. 

the Log-normal, the Gamma, the Weibull, the Double-exponential and the BPT 

distributions. We report in Appendixes A.2-A.6 the main features of these 

distributions. 

The difference between the log-likelihood for the null hypothesis and the renewal 

hypothesis is defined as: 
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    d ln ln lnR PL L L  .                              (1) 

A positive dlnL means that the sequence is better described by the renewal 

hypothesis than by the null hypothesis. 

To take into account the effect of the uncertainties of paleoseismological data on 

the estimation of dlnL values, we have used a Monte Carlo procedure. So, we have 

computed the average and the standard deviation of dlnL from a thousand inter-

event by choosing the occurrence time of each event within the limits of uncertainty 

provided by the observations. In this procedure it is assumed that the real 

occurrence time has a uniform probability distribution within such time limits. 

In order to check the statistical significance of the dlnL results we have followed a 

classical procedure. It consists in finding out the confidence level by which a 

hypothesis can be rejected with respect to the other. According to a standard 

practice, we can reject one of the two hypotheses only if the confidence level is 

higher than 95%. In this test we are interested in testing if the null hypothesis of the 

Poisson model can be rejected in light of the available paleoseismological data for 

any of the observed sites. Still using a Monte Carlo procedure, we build up one 

thousand synthetic sequences based on the Poisson distribution for the same 

number of events and the same total time covered by the observed data for each 

fault. Then we compute the desired confidence level from the percentile 

corresponding to the real dlnL value in the synthetic distribution. It corresponds to 
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the probability that a value equal to or smaller than the observed dlnL comes by 

chance from casual fluctuations of a uniform random distribution (Console et al., 

2002). 

 

2. DATA 

Sequences of events on a single structure are quite infrequent to observe because 

the time interval covered by historical and instrumental catalogues is often too 

short when compared to the average recurrence time of individual faults. Since 

paleoseismology can extend the record of earthquakes of the past back in time up 

to several millennia, it represents a great opportunity to study how seismic events 

recur through time and thus to provide innovative contributions to seismic hazard 

assessment (Figure 1). 

Based on these considerations, for the present study we have used data from the 

Database of "Earthquake recurrence from paleoseismological data" developed in 

the frame of the ILP project "Earthquake Recurrence Time" (Pantosti, 2000). One of 

the main aims of this database is to resume the information concerning the 

recurrence through time of strong earthquakes occurred along seismogenic faults by 

means of paleoseismological study. It includes information about the analyzed sites 

(fault, segmentation, location, kinematics, slip rates) as well as the definition of 
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paleoearthquakes (type of observation for event recognition, type of dating, age, 

size of movement, uncertainties). The database contains prevalently 

faults for which more than two dated events (one inter-event) exist. 

In this work we have considered sites whose seismic sequence is composed of at 

least six events (except for the case of Atotsugawa, Japan, for which only five events 

were available). Every paleosismological site was investigated by scientists who 

proposed an interpretation of its seismic sequence combining the instrumental and 

historical earthquake records with paleoseismological study.  

We have used the age of paleoevents as indicated by the authors.  

For the Mediterranean area, we have extracted five sequences of earthquakes: the 

Fucino fault in Central Italy (Galadini and Galli, 1999), the Irpinia and the Cittanova 

fault in Southern Italy (Galli and Bosi, 2002; Pantosti et al., 1993), the Skinos fault in 

Central Greece (Collier et al., 1998), and El-Asnam fault in Northern Algeria 

(Meghraoui and Doumaz, 1996). Other paleosismological and/or historical 

sequences belong to i) Northern America: San Andreas fault Wrightwood site (Fumal 

et al., 2002), San Andreas fault Pallet Creek site (Sieh, 1978; Biasi et al., 2002) and 

Cascadia (Atwater and Hemphill-Haley, 1997), ii) New Zealand: Pakarae River fault 

(Ota et al., 1991), Awatere fault (McCalpin, 1996), Rotoitipakau fault (Berryman et 

al., 1998), ii) China: Daqingshan fault (Ran et al., 2003) and Zemuhe fault (He and 

Ren, 2003),  and iiii) Japan: Nankai fault, Miyagi fault, Atera fault, Tan’na fault, 
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Atotsugawa fault and Nagano fault (Committee for Earthquake prediction, 2001) 

(Figure 2). It is evident that in the sites (except for Nankai, Tan’na, and Miyagi) only 

the youngest events are characterized by an exact occurrence time because they are 

instrumental or historical; instead most of them are paleoseismological, thus their 

age is affected by uncertainty (Figure 2 and Table 1). In fact, dating of events 

depends largely on the presence of material suitable for radiometric dating in 

correspondence of the event horizons, and uncertainties are related both to the 

availability of chronological constrain in the stratigraphic sequence and to the 

uncertainty that affect the single radiocarbon date. In some cases the uncertainties 

are of the same size of the time intervals between consecutive events, so that two 

events have been reported within the same time limits. 

 

4. RESULTS AND DISCUSSION 

By using the ages of paleoearthquakes with their associated uncertainties, we  

compared the renewal and the uniform Poisson models, taking the latter as null 

hypothesis. The comparison was based on the log-likelihoods of the observed 

sequences under each model for a number of studied sites. The renewal models 

considered here are the Log-normal, Gamma, Weibull, Double-exponential and BPT 

distributions. For the Log-normal distribution in particular, we followed two 

different procedures: first, the shape parameter   is obtained from the real 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

sequences as a free parameter; and then it is equal to 0.4, as suggested by Wells and 

Coppersmith (1994).   

For each of the 19 (paleoseismological or historical) earthquake sequences we  

computed the mean inter-event time Tr with its standard deviation (see the first 

column of Table 2). The errors in the mean inter-event times may appear small, 

compared with the large uncertainties affecting the paleoseismological datations. 

This circumstance may be justified taking into account that all the random 

occurrence times are sorted in time before computing the differences between 

consecutive events. In this way, negative values of inter-event times, which would 

produce larger standard deviations, are avoided.  

For every renewal model, we computed also the shape parameter with its standard 

deviation and the difference dlnL (equation 1). The values obtained for these 

parameters are reported in Table 2, where each pair of columns refers to one of the 

renewal models separately.  

We first start discussing the results for the Log-normal model. Looking at the shape 

parameter   obtained from the observations (Table 2), we see that only for the 

Fucino fault, and for the three Japanese faults with historical data (Nankai, Atera 

and Tan’na),   is close to or smaller than the standard value of 0.4 adopted by Wells 

and Coppersmith (1994). This means that only their seismic sequences exhibit a 

significantly high periodicity, while the earthquake occurrence of the other 
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sequences has less regularity and more casualty. The largest   values belong to the 

Skinos and the Rotoitipakau sites ( = 0.91  0.25 and 0.94 ± 0.36 respectively) 

suggesting that these sequences follow the Poisson model in reasonable way. 

Since all the dlnL values (Table 2) are positive, we could apparently infer that the 

seismic sequences are characterized by a non random behaviour. However, looking 

at the dlnL values with their uncertainties, it is easy to notice that these values are 

clearly higher than zero only for 7 sites (Fucino, Wrightwood, Pallet Creek, Pakarae 

River and the three Japanese historical sets), while for the others the errors are 

comparable to or larger than the respective dlnL values. 

As said earlier in Section 2, the statistical significance of such comparisons was 

investigated by means of a Monte Carlo procedure. One thousand synthetic 

sequences were simulated under the Poisson model, and the dlnLs so obtained were 

sorted out in increasing order. Figure 3 shows the cumulative distributions of the 

synthetic dlnLs for the 19 sites of this study. For each site, the plots show the 

comparison between the variable- Log-normal distribution and the Poisson 

distribution. 

We observe that in correspondence of the zero value of the x-axis (dlnL= 0) most of 

the plots cross a value pretty close to the center of the distribution. It means that 

the simulations yield approximately the same number of positive and negative 

results for dlnL. The percentage of simulations that fall below the observed dlnL 
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value indicates the level of confidence by which the null hypothesis can be rejected. 

Table 3 shows these results in terms of the confidence level, , for each of the 

models and each of the sites of this study. Only for the Fucino site, and for two 

Japanese sites with historical data (Nankai and Tan’na) we can reject the null 

hypothesis with  >95%. 

Looking at the plots for the  = 0.4 Log-normal distribution (Figure 4) we notice that 

the range of the dlnL axis extends much more to negative values. The dlnLs under 

this more restrictive hypothesis have large uncertainties suggesting that they are 

significantly different from zero for most of the data. Thus, most earthquake 

sequences appear characterized by random occurrence of seismic events, rather 

than by quasi-periodical behaviour. For six sequences the dlnL values are negative. 

Although the dlnLs of the other sites are positive, we can reject the null hypothesis 

by the 95% confidence level criterion only for the two historical sequences of Nankai 

and Tan’na. Considering only the results from the paleoseismological data sets, we 

can see that the highest confidence level is obtained for the Fucino fault with a 

value equal to 87±19%. The evident difference between the Log-normal distribution 

with variable  and that with  = 0.4 is caused by the capacity of the former to 

adjust the shape parameter to the data. Thus, computing   from the data, the 

shape parameter improves the performance of the renewal model with respect to 

the Poisson hypothesis. 
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Considering the Gamma distribution, from a theoretical point of view we could 

expect that its behaviour should not be so different from that of the variable-  Log-

normal distribution, because their pdfs are similar to each other and the only 

difference is the more or less prominent peak. Indeed, for this model, the dlnL 

values (Table 2) and the cumulative dlnL distributions (Figure 5) are comparable with 

those of the variable-  Log-normal family. However, the confidence levels  for the 

Gamma model are almost constantly higher than those of the previous renewal 

model. Consequently, Table 3 shows that for the Gamma distribution the probability 

that a dlnL value is smaller than or equal to the observed one comes from a random 

distribution, is frequently larger than the same probability evaluated with the Log-

normal statistical family. In spite of this slightly better performance, for the Gamma 

distribution the sites for which we can reject the null hypothesis with  > 95% are 

substantially the same as those observed for the variable- Log-normal distribution. 

Regarding the Weibull distribution, we note that when its shape parameter   is 

larger than 1, the sequence of earthquakes has a quasi-periodic behaviour; instead, 

when  <1 the seismic sequence is clustered. All the earthquake sequences analysed 

in this study have shape parameter larger than 1 (Table 2). This points out the 

regular behaviour of these seismic sequences. We can draw the same conclusion 

also looking at the values of dlnL, together with their uncertainties, at least for most 

of the sites (Table 3).  From Tables 2 and 3 the quasi-periodic behaviour of the 
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Fucino and Atera paleoseismological data sets, together with the Nankai and Tan’na 

historical data sets, is confirmed also for the Weibull model. Moreover, under this 

renewal model, for two more sites (Daqinshan and Atorsugawa) the confidence level 

by which the null hypothesis of random occurrence can be rejected is close to 95%. 

Figure 6 shows plots for the comparison between the Weibull and Poisson 

distributions. We can clearly observe that the point dlnL=0 is close to the 30 

percentile, i.e. the number of simulations with positive dlnL is significantly larger 

than the number of simulations with dlnL<0. This circumstance supports a better 

performance of this model in comparison with the Log-normal and Gamma models. 

The results for the Double-exponential distribution (Tables 2 and 3 and Figure 7) 

show a behaviour similar to those of the previous three models. In this case, unlike 

for the three previous models, negative values for dlnL were obtained for seven 

paleoseismological sites, showing that the uniform Poisson model performs better 

than the renewal model for these sites. Table 3 displays that the null hypothesis can 

be rejected under the Double-exponential model for the same five sites as for the 

Weibull model, including  Daqinshan and Atorsugawa sites for which the confidence 

level is close to 95%. 

The BPT distribution confirms the general behaviour of the renewal models 

examined above. The values of the shape parameters Cv (Table 2) are close to s of 

the variable-  Log-normal distribution. In fact, their definition is pretty similar. 
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Under the BPT model, negative values for dlnL were obtained for some 

paleoseismological sites, but not always for the same sites as under the Double-

exponential model (Table 2).  

Regarding the confidence level for the rejection of the null hypothesis, the BPT 

model achieves a result larger than 95% for only two historical data sets (Nankai and 

Tan’na) (Table 3). Figure 8 shows the plots of the cumulative distribution of the dlnL 

values obtained for 1000 random sequences under the BPT model, together with 

the dlnL values of the real observations (shown by black lines).  

For the BPT renewal model, we have performed a further test. For each earthquake 

sequence, we have built up, through a Montecarlo procedure, synthetic sequences 

from a BPT distribution, characterized by the same number of events and the same 

total time covered by the observed data. The computer code allows us to choose 

arbitrarily the inter-event time Tr (input) and the coefficient of variation Cv (input). 

For each of these synthetic distributions, the corresponding Tr (output) and Cv 

(output) were computed. Repeating the procedure 1000 times, we have obtained an 

average Tr (output) and Cv (output), which are not necessarily the same as the 

respective input parameters. By means of a trial and error procedure, it was easy to 

find which pair of input parameters Tr (input) and Cv (input) would provide the same 

average output values as observed from the real seismic sequence. 
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The results of these simulations, reported in Table 4, show (in agreement with the 

results published by Parsons, 2008) that both the inter-event time Tr (output) and 

the coefficient of variation Cv (output) are systematically smaller than the respective 

Tr (input) and Cv (input).  We have then repeated the analysis carried out for the BPT 

renewal model, using Tr (input) and Cv (input) as they were the parameters 

estimated directly from the observations. In this way we have obtained new dlnL 

values and the relative significance levels  for all the 19 fault sites (Table 5). These 

results do not change the conclusions drawn directly from the real observations, 

though they show smaller  values for all the data sets.  

As the BPT renewal model has become rather popular in the last decade, we carried 

out a further test assuming this model as the null hypothesis against which to 

compare the performance of the others. Also in this case, we used the log-likelihood 

criterion for performance comparison. The conclusion obtained from the results 

(shown in Table 6) is that the BPT distribution performs generally better than all the 

other models, except for the Weibull distribution. 

 

5. CONCLUSIONS 

In this paper we tested the seismic recurrence of 19 earthquake sequences to assess 

their characteristics of random or regular occurrence. We faced the problem of the 

uncertainty inherent in the paleoseismological data, because geological expressions 
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of the past earthquakes are not easily discernible. Uncertainties affect the age 

estimates of the paleoearthquakes due to both the dating methods and the 

availability of dating evidence in the stratigraphic sequences. In a few cases these 

uncertainties may be comparable to or even larger than one seismic cycle. A 

rigorous statistical approach to the problem of the uncertainties in the observations 

of recurrence times for seismic hazard assessment has been introduced by Rhoades 

et al., (1994) and Rhoades and Van Dissen (2003). In this study we used the Monte 

Carlo method for dealing with such uncertainties. 

We based our analysis on the comparison between the Log-normal, Gamma, 

Weibull, Double-exponential and BPT distributions, and the exponential distribution. 

With the exception of two paleoseismological data sets (Fucino and Atera) and two 

historical Japanese sequences (Nankai and Tan’na), whose regularity is a statistically 

significant feature under most of the models considered in this study, the analyzed 

seismic sequences appear characterized by irregular behaviour.  

The lack of regularity in the earthquake occurrence for many data sets may be 

explained by either inherent non-deterministic fault behaviour or interaction 

between different faults. Indeed, closely spaced faults are characterized by a stress 

field that affects each other, possibly interacting with failure triggering processes. 

Another possible explanation of the scarce regularity found for most of the faults 

considered in  our study could be found in the poor reliability of the data rather than 
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in the fault behavior per se. An in depth study on the consequences of the scarce 

accuracy of the occurrence times on the results for the value of the coefficient of 

variation and regularity of earthquake occurrence was carried out by Sykes and 

Menke (2006). 

As outlined by the overall picture of Figure 9, our analysis pointed out a slight 

superiority of the Weibull model with respect to the others, as it can fit the data 

with a larger dlnL, and a comparably small standard deviation. However, the 

difference is not really outstanding, even if it is clear only for high values of the 

recurrence time and for high values of the shape parameters.  

In conclusion, the hypothesis of a regular behaviour of earthquake recurrence 

seems not yet sufficiently tested to justify its inclusion in an operational and 

practically applicable earthquake forecast system. 
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A.1 Exponential distribution 

The pdf of the Exponential, or Poisson, distribution is : 
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1

( ) exp
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x
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 
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 
 

where Tr is the mean of the inter-event time. 

 

A.2 Log-normal distribution 

The pdf of the Log-normal distribution is : 

 
2

2

ln1
( ) exp

22

x
f x

x



 

  
  

  
 

where  and  are the mean and standard deviation of the logarithm of the inter-

event time. 

The Log-normal statistical distribution has been evaluated estimating the shape 

parameter  both from the data and assuming the fixed value  = 0.4 (Wells and 

Coppersmith, 1994): this value describes the shape parameter of a quasi-periodic 

seismic sequence. The increase of  represents the decrease of the periodicity of 

the seismic sequence. When   1 earthquakes occur at random over the time. For 

evaluating   from data, the following equation is used: 

 
2

1

1

ln ( )N

j

t j

N








 
 . 
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A.3 Gamma distribution 

The pdf of the Gamma distribution is: 

1

1
( ) exp

( )

x x
f x



   



   
   

    
 

where ( )  is the Gamma function, and  and  are the shape and the scale 

parameters of this statistical distribution, respectively: 

2

( )

rT

t




 
  

 
,   

 
2

( )

r

t

T





  

where Tr and (t) are the mean and the standard deviation of the inter-event times 

in the sample: 

1

1

1
( )

N

r

j

T t j
N


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  ,   
 

2
1

1

( )
( )

N
r

j

t j T
t

N






 
   . 

 

A.4 Weibull distribution 

The pdf of the Weibull distribution is: 

1

( ) exp
x x

f x

 


  

      
    

     
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where  and  are the shape and the scale parameters, respectively. In particular the 

scale parameter of the Weibull distribution is coincident with the mean value of the 

inter-event times, Tr. Instead,   is the inverse of the coefficient of variation, or 

aperiodicity, defined as the ratio between the standard deviation and the mean of 

the observed inter-event time. 

  

A.5 Double-exponential distribution 

The pdf of the Double-exponential distribution is: 





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
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x
b

x
b

b
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b

x

b

x
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2
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2

1

exp
2

1
)(

)(

)(

 

Where b and  are the shape and the scale parameters, respectively. These 

parameters are determined from a set of observations from the following relations: 

N

x

b

N

i

i




 1



 , 
N

x

Tr

N

i

i
 1      

  

 

A.6 BPT distribution 
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The pdf of the Brownian passage time (BPT) distribution is (Ellsworth et al., 1999; 

Matthews et al.,  2002): 

 
1\2 2

2 3 2
( ) exp

2 2

rr

v v r

x TT
f x

C x C T x

    
   
    

 

where Tr is the mean value of the inter-event time and Cv is the coefficient of 

variation (or aperiodicity), defined as /v rC T . Both Tr and  are defined as in A.3. 
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FIGURE CAPTIONS 

 

Figure 1 - Distribution of events along a hypothetical seismic structure compared 

with the length of instrumental, historical and paleoseismological catalogues of 

seismicity. We may have short time window within which we observe how 

moderate earthquakes recurred in the past even using historical record that may 

span between a few centuries to a couple of millennia. Paleoseismology can extend 

the record of past earthquakes back in time up to several millennia representing a 

good opportunity to investigate how strong earthquakes recur through time. 

 

Figure 2 - Time distribution of earthquakes for the sequences considered in this 

study. The most recent ages of the events of each sequence are mostly historical 

and indicated by single solid lines, whereas for the paleoseismic events the ages are 

indicated by mean ages (solid lines) and the associated uncertainties (shaded areas).  

 

Figure 3 - Cumulative distributions of dlnLs for 1000 synthetic sequences obtained 

from the Poisson distribution compared with the observed dlnLs computed under a 

variable- Log-normal distribution, with its uncertainty, for each site considered in 

this study. The ordinate of the real dlnL in the synthetic distribution gives the 
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probability that the observed dlnL comes by chance from a random distribution. The 

vertical lines show the observed dlnLs and the horizontal lines show the respective 

probabilities. The standard deviations and their respective probabilities are shown 

by dotted lines. 

 

Figure 4 - As in Figure 3, for the comparison between the  = const Log-normal and 

the Poisson distribution. 

 

Figure 5 - As in Figure 3, for the comparison between the Gamma and the Poisson 

distribution. 

 

Figure 6 - As in Figure 3, for the comparison between the Weibull and the Poisson 

distribution. 

 

Figure 7 – As in Figure 3, for the comparison between the Double-exponential and 

the Poisson distribution. 
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Figure 8 - As in Figure 3, for the comparison between the Brownian Passage Time 

and the Poisson distribution. Black lines show the results obtained directly from the 

observations, red lines show the results for the “Modified” BPT model. 

 

Figure 9 – Mean values of the log-likelihood ratio for all the models and the data 

sets considered in this study, with their respective error bars. 
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TABLE CAPTIONS 

 

Table 1 - Age of the events for the sites analyzed in the present study. Historical 

earthquakes are indicated by a single date, whereas for the paleoseimic events 

(except for Tan’na) the age is characterized by a more or less wide range of 

uncertainty.  

 

Table 2 - Results of the studied seismic sequences for the comparison of the six 

distributions with the Poisson distribution. For each site it is shown: the mean inter-

event time Tr, the shape parameter, and the difference of the log-likelihood 

between the renewal model and the Poisson distribution dlnL. Every value is shown 

with its uncertainty, except for the fixed shape parameter  = 0.4, which comes 

from the literature.  

 

Table 3 - Significance levels by which the Poisson distribution can be rejected, with 

their uncertainties. These values refer to different renewal models and to any of the 

19 sites considered in this study. 
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Table 4 - Inter-event times Tr and shape parameter Cv of 1000 random simulations of 

sequences under the BPT model given as input, compared with the corresponding 

mean Cv and Tr values obtained as output.  

 

Table 5 - Results (difference of log-likelihood between the two hypothesis, dlnL, and 

confidence level  with their uncertanties) of the comparison between the 

"modified" BPT and the Poisson distributions. "Modified" BPT model means that as 

input values, Cv(input) and Tr(input), we have entered the parameters estimated 

from the specific analysis carried out for the BPT model (see Table 4). 

 

Table 6 – Results of the comparison between the performance of the BPT model 

with those of the other renewal models considered in this study. The second and 

third columns display the recurrence time and coefficient of variation of each 

earthquake sequence. The following pairs of columns display the shape parameters 

and the log-likelihood ratio for all the other renewal models assuming the BPT 

distribution as the null hypothesis. Positive dlnLs mean a better performance of the 

tested model with respect to the BPT model.  
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Table 1.  

  Fucino Irpinia Cittanova Skinos El Asnam 

Event 1 1915 AD 1980 AD 1783 AD 1981 AD 1980 AD 

Event 2 508 AD 230 AD - 620 BC 300 - 370 AD 1295 - 1680 AD 1329 - 1630 AD 

Event 3 1300 - 1500 BC 620 - 2330 AD 390 AD - 4300 BC 990 - 1390 BC 1040 - 1280 BC 

Event 4 3618 – 3944 BC 2460 - 4790 BC 4060 - 10770 BC 990 - 1390 BC 90 AD - 400 BC 

Event 5 5576 – 5979 BC 4790 - 6650 BC 4060 - 10770 BC 670 - 1165 BC 830 - 1256 BC 

Event 6 5579 - 10729 BC 9230 - 13050 BC 10710 - 13770 BC 670 - 1165 BC 1985 - 2559 BC 

Event 7        2509 - 3040 BC 

Event 8         2509 - 3040 BC 

Event 9         4510 - 5350 BC 

 

 

  Wrightwood Pallet Creek Cascadia 

Event 1 1857 AD 1857 AD 1700 AD 

Event 2 1812 AD 1812 AD 700-1100 AD 

Event 3 1647-1717 AD 1496-1599 AD 650-870 AD 

Event 4 1508-1569 AD 1343-1370 AD 300-500 AD 

Event 5 1448-1518 AD 1046-1113 AD 50-300 BC 

Event 6 1191-1305 AD 1031-1096 AD 800-1300 BC 

Event 7 1047-1181 AD 914-986 AD 1320-1500 BC 

Event 8 957-1056 AD 803-868 AD   

Event 9 800-881 AD 749-775 AD   

Event 10 736-811 AD 614-666 AD   

Event 11 695-740 AD 270-430 AD   

Event 12 657-722 AD 140-350 AD   

Event 13 551-681 AD     

Event 14 407-628 AD     
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  Pakarae R. Awatere Rotoitipakau Daqingshan Zemuhe 

Event 1 1350 AD 1848 AD 1886 AD- 665 BC 2080-2550 BC 1850 AD 

Event 2 880-1020 AD 970-770 AD 1886 AD- 665 BC 4540-5140 BC 814 AD 

Event 3 250-510 AD 1050 AD-2050 BC 665-4830 BC 9180-10560 BC 1000-2200 BC 

Event 4 400-600 BC 3960-4230 BC 665-4830 BC 11820-13360 BC 4217-4717 BC 

Event 5 1820-2100 BC 4540-4840 BC 4830-7250 BC 14050-15970 BC 5358-12441 BC 

Event 6 3420-3660 BC 6380-6660 BC 7250-8530 BC 15970-16850 BC 5358-12441 BC 

Event 7 4490-5090 BC       5358-12441 BC 

 

 

Event 1 Nankai Miyagi Atera Tan'na Atotsugawa Nagano 

Event 2 1947.056 AD 1978.533 AD 1586.1317 AD 1930.99 AD 1858.358 AD 1847.438 AD 

Event 3 1855.064 AD 1936.925 AD 164 AD -597 BC 841 AD 1041-1739 BC 1072-423 AD 

Event 4 1707.909 AD 1897.226 AD 1807-2477 BC 53 AD 2053-3279 BC 694 AD -977 BC 

Event 5 1605.175 AD 1861.890 AD 4018-4461 BC 1120 BC 5387-6085 BC 433 -1148 BC 

Event 6 1498.608 AD 1835.637 AD 6315-6673 BC 2580 BC 7495-8599 BC 914-3736 BC 

Event 7 1361.675 AD 1793.212 AD 6319-8748 BC 3900 BC   3166-3766 BC 

Event 8 1099.226 AD         3286-5232 BC 

Event 9 887.736 AD         4992-6871 BC 

Event 10 684.997 AD         6505-7379 BC 
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Table 2.  

   

Log-normal 

  

 

 

Log- 

  

normal with 

const Gamma   

Sequence Tr [yr] σ dlnL σ dlnL  dlnL 

Fucino 2017 ± 294 0.41 ± 0.27 4.0 ± 1.5 0.4 2.6 ± 2.2 11.7 ± 8.5 4.1 ± 1.6 

Irpinia 2626 ± 214 0.68 ± 0.22 1.0 ± 1.2 0.4 1.3 ± 2.3 2.8 ± 2.3 1.0 ± 1.1 

Cittanova 2807 ± 171 0.82 ± 0.39 0.6 ± 1.1 0.4 -0.9 ± 6.6 2.8 ± 2.1 0.76 ± 0.96 

Skinos 232 ± 21 0.91 ± 0.25 0.40 ± 0.80 0.4 -0.2 ± 2.3 2.1 ± 1.7 0.59 ± 0.59 

El Asnam 988 ± 35 0.76 ± 0.16 0.53 ± 0.79 0.4 -0.9 ± 2.7 2.33 ± 0.66 0.87 ± 0.69 

Wrightwood 104.7 ± 4.0 0.605 ±0.062 4.73 ± 0.91 0.4 6.87 ± 0.94 2.95 ± 0.75 4.68 ± 0.80 

Pallet C. 148.6 ± 4.6 0.707 ±0.055 1.85 ± 0.61 0.4 3.30 ± 0.96 2.61 ± 0.46  2.38 ± 0.51 

Cascadia 518.3 ± 8.5 0.74 ± 0.25 0.7 ± 1.4 0.4 0.2 ± 3.2 3.8 ± 2.2 1.4 ± 1.2 

Pakarae R. 1024 ± 28 0.563 ±0.033 1.69 ± 0.37 0.4 2.62 ± 0.33 4.30 ± 0.38 2.24 ± 0.30 

Awater 1674 ± 16 0.80 ± 0.25 0.00 ± 0.56 0.4 -0.1 ± 3.9 2.1 ± 1.1 0.10 ± 0.63 

Rotoitipakau 1485 ± 117 0.94 ± 0.36 0.5 ± 1.4 0.4 -2.5 ± 6.5 2.7 ± 2.2 1.0 ± 1.1 

Daqingshan 2349 ± 48 0.56 ± 0.24 3.3 ± 2.1 0.4 2.9 ± 2.6 7.1 ± 8.4 3.8 ± 1.8 

Zemuhe 2084 ± 226 0.73 ± 0.31 1.4 ± 1.2 0.4 0.4 ± 4.6 3.9 ± 2.2 1.9 ± 1.1 

Nankai 158 ± 61 0.38 4.7 0.4 4.47 6.6 4.61 

Miyagi 37.0 ± 6.6 0.2 4.8 0.4 1.98 31.18 5.27 

Atera 1831 ± 132 0.47 ± 0.39 3.8 ± 2.8 0.4 1.0 ± 4.1 23 ± 27 4.2 ± 2.6 

Tan'na 1166 ± 254 0.23 5.3 0.4 3.2 21 5.16 

Atotsugawa 2477 ± 78 0.47 ± 0.19 2.1 ± 1.3 0.4 1.93 ± 0.73 9.2 ± 7.4 2.5 ± 1.1 

Nagano 1101 ± 31 0.84 ± 0.30 0.7 ± 2.0 0.4 -2.0 ± 6.3 3.5 ± 2.8 1.5 ± 1.7 
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    Weibull   BPT   Double- exponential 

Sequence Tr [yr]  dlnL Cv dlnL b dlnL 

Fucino 2017 ± 294 3. 2 ± 1.2 5.4 ± 1.8 0.35 ± 0.12 3.1 ± 5.2 521 ± 197 3.9 ± 1.8 

Irpinia 2626 ± 214 1.61 ± 0.47 1.6 ± 1.4 0.66 ± 0.16 0.9 ± 3.1 1251 ± 348 -0.01 ± 1.5 

Cittanova 2807 ± 171 1.59 ± 0.55 1.3 ± 1.3 0.70 ± 0.23 -0.76 ± 6.8 1522 ± 486 -0.75 ± 1.5 

Skinos 232 ± 21 1.38 ± 0.45 1.07 ± 0.76 0.79 ± 0.21 0.23 ± 1.6 137 ± 33 -0.92 ± 0.99 

El Asnam 988 ± 35 1.51 ± 0.21 1.74 ± 0.92 0.673 ± 0.089 0.5 ± 2.2 514 ± 83 -0.87 ± 1.1 

Wrightwood 104.7 ± 4.0 1.70 ± 0.21 6.8 ± 1.0 0.595 ± 0.073 5.24 ± 0.86 49.9 ± 6.3  1.2 ± 1.4 

Pallet C. 148.6 ± 4.6 1.61 ± 0.14 4.10 ± 0.66 0.626 ± 0.057 2.21 ± 0.78 77.4 ± 6.3 -0.81 ± 0.77 

Cascadia 518.3 ± 8.5 1.89 ± 0.49 2.6 ± 1.3 0.56 ± 0.13 -0.2 ± 3.7 232 ± 57 0.44 ± 1.5 

Pakarae R. 1024 ± 28 2.071±0.091 3.50 ± 0.30 0.484 ± 0.021 2.18 ± 0.38 408 ± 33 1.09 ± 0.49 

Awater (1674 ± 16 1.42 ± 0.38 0.5 ± 1.0 0.76 ± 0.21 0.1 ± 1.6 926 ± 235 -1.3 ± 1.3 

Rotoitipakau 1485 ± 117 1.55 ± 0.53 1.8 ± 1.4 0.71 ± 0.21 -2.0 ± 6.6 810 ± 239 -0.44 ± 1.8 

Daqingshan 2349 ± 48 2.5 ± 1.0 5.2 ± 2.0 0.45 ± 0.13 3.0 ± 4.4 795 ± 231 3.4 ± 1.9 

Zemuhe 2084 ± 226 1.91 ± 0.52 3.1 ± 1.3 0.56 ± 0.15 -0.1 ± 6.2 916 ± 252 0.99 ± 1.3 

Nankai 158 ± 61 2.57 6.26 0.389 4.9 50.85 2.68 

Miyagi 37.0 ± 6.6 5.58 7.13 0.179 5.2 5.02 5.04 

Atera 1831 ± 132 4.3 ± 1.7 5.9 ± 2.4 0.30 ± 0.14 1.5 ± 9.8 395 ± 154 4.7 ± 1.8 

Tan'na 1166 ± 254 4.4 7.18 0.22 5.6 181.76 5.82 

Atotsugawa 2477 ± 78 2.87 ± 0.78 3.6 ± 1.2 0.38 ± 0.11 2.4 ± 1.4 720 ± 213 2.3 ± 1.1 

Nagano 1101 ± 31 1.8 ± 1.7 3.1 ± 2.0 0.61 ± 0.16 -2.8 ± 8.1 517 ± 143 0.54 ± 2.2 
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Table 3 

 

  α (%) α (%) α (%) α (%) α (%) α (%) 

  

Logn., 

  Logn., =const Gamma Weibull BPT Double-exp. 

Fucino 97.5 ± 4.1 87 ± 19 97.4 ± 4.7 98.0 ± 3.5 94 ± 36 98.2 ± 4.0 

Irpinia 73 ± 24 72 ± 22 71 ± 24 72 ± 24 70 ± 35 73 ± 21 

Cittanova 62 ± 21 54 ± 36 61 ± 19 63 ± 22 46 ± 42 61 ± 21 

Skinos 59 ± 21 45 ± 29 61 ± 15 60 ± 16 47 ± 33 52 ± 18 

El Asnam 67 ± 17 64 ± 17 71 ± 14 73 ± 14 67 ± 27 73 ± 14 

Wrightwood 75 ± 16 75 ± 18 81 ± 11 79 ± 11 80 ± 13 66 ±25 

Pallet C. 37 ± 19 39 ± 18 60 ± 12 65 ± 10 37 ± 25 52 ± 11 

Cascadia 54 ± 36 54 ± 30 70 ± 29 77 ± 20 32 ± 45 76 ± 21 

Pakarae R. 79.1 ± 5.2 84.1 ± 3.3 85.7 ± 3.2 88.9 ± 2.3 83.5 ± 4.8 85.0 ± 5.0 

Awater 47 ± 17 56 ±32 44 ± 23 45 ± 27 50 ± 27 49 ± 25 

Rotoitipakau 42 ± 31 45 ± 35 48 ± 28 57 ± 28 27 ± 44 60 ± 27 

Daqingshan 91 ± 20 83 ± 17 92 ± 14 94.9 ± 9.3 87 ± 33 94.6 ± 7.3 

Zemuhe 82 ± 18 71 ± 28 87 ± 13 90 ± 10 55 ± 41 90 ± 10 

Nankai 98.35 99.7 98.25 96.93 98.5 92.2 

Miyagi 66.15 58.8 73.1 85.3 72.8 57.7 

Atera 98.6 ± 8.9 68 ± 31 98.9 ± 6.0 99.2 ± 2.8 85 ± 45 99.6 ± 1.3 

Tan'na 99.5 99.25 99.75 99.7 99.7 99.73 

Atotsugawa 93 ± 11 81 ± 16 94.8 ± 6.7 95.6 ± 5.3 93 ±12 95.0 ± 5.3 

Nagano 76 ± 43 59 ± 33 90 ± 38 92 ± 17 31 ± 46 91 ± 15 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 4 

 

  Tr (input) [yr] Cv (input) Tr (output) [yr] Cv (output) 

Fucino 2176.33 0.41 2059 ± 319 0.35 ± 0.13 

Irpinia 2509.67 0.97 1989 ± 757 0.67 ± 0.25 

Cittanova 2629.67 1.05 2028 ± 844 0.70 ± 0.26 

Skinos 243 1.4 180 ± 153 0.79 ± 0.50 

El Asnam 944.75 0.87 789 ± 234 0.67 ± 0.21 

Wrightwood 118.43 0.74 103 ± 80 0.66 ± 0.41 

Pallet C. 155.67 0.75 133 ± 64 0.62 ± 0.28 

Cascadia 508.28 0.72 419 ± 119 0.56 ± 0.20 

Pakarae R. 1015.43 0.6 866 ± 205 0.48 ± 0.16 

Awater 1459.66 1.2 1072 ± 519 0.76 ± 0.29 

Rotoitipakau 1505.42 1.0 1108 ± 486 0.71 ± 0.24 

Daqingshan 2722.57 0.55 2303 ± 539 0.45 ± 0.15 

Zemuhe 2151.13 0.7 1862 ± 463 0.56 ± 0.19 

Nankai 158 0.43 149 ± 20 0.38 ± 0.11 

Miyagi 37 0.25 40 ± 30 0.17 ± 0.15 

Atera 1831 0.35 1745 ± 235 0.30 ± 0.11 

Tan'na 1166 0.25 1152 ± 115 0.223 ± 0.083 

Atotsugawa 2477 0.47 2300 ± 453 0.38 ± 0.16 

Nagano 1101 0.74 952 ± 223 0.61 ± 0.19 
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Table  5 

 

  Tr [yr] 

Cv 

(input) dlnL α (%) 

Fucino 2017 ± 294 0.41 1.1 ± 10 69 ± 45 

Irpinia 2626 ± 214 0.97 0.5 ± 1.5 63 ± 24 

Cittanova 2807 ± 171 1.05 -1.0 ± 5.3 43 ± 40 

Skinos 232 ± 21 1.4 0.38 ± 0.58 52 ± 31 

El Asnam 988 ± 35 0.87 0.5 ± 1.8 67 ± 24 

Wrightwood 104.7 ± 4.0 0.74 4.78 ± 0.63 71 ± 12 

Pallet C. 148.6 ± 4.6 0.75 2.42 ± 0.54 44 ± 17 

Cascadia 518.3 ± 8.5 0.72 -0.0 ± 2.5 27 ± 44 

Pakarae R. 1024 ± 28 0.6 2.05 ± 0.27 82.1 ± 3.7 

Awater 1674 ± 16 1.2 -0.4 ± 1.2 42 ± 19 

Rotoitipakau 1485 ± 117 1.0 -0.9 ± 3.7 35 ± 34 

Daqingshan 2349 ± 48 0.55 2.0 ± 4.9 74 ± 37 

Zemuhe 2084 ± 226 0.7 -0.6 ± 6.3 49 ± 41 

Nankai 158 ± 61 0.43 4.65 98.15 

Miyagi 37.0 ± 6.6 0.25 4.42 54.4 

Atera 1831 ± 132 0.35 -5.0 ± 25 14 ± 50 

Tan'na 1166 ± 254 0.25 5.3 98.4 

Atotsugawa 2477 ± 78 0.47 1.7 ± 1.2 87 ± 20 

Nagano 1101 ± 31 0.74 -2.2 ± 6.3 35 ± 43 
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Table 6 

      Log-normal with  const Log- normal,  =const 

Sequence Trm [yr] Cv σ dlnL σ dlnL 

Fucino 2059 ± 289 0.35 ± 0.13 0.35 ± 0.13 -0.203 ± 0.061 0.4 -1.12 ± 0.92 

Irpinia 1989 ± 545 0.67 ± 0.25 0.70 ± 0.24 -0.258 ± 0.036 0.4 -0.01 ± 0.22 

Cittanova 2028 ± 587 0.70 ± 0.26 0.73 ± 0.26 -0.229 ± 0.081 0.4 -0.10 ± 0.40 

Skinos 180 ± 61 0.79 ± 0.29 0.79 ± 0.25 -0.286 ± 0.033 0.4 -0.31 ± 0.76 

El Asnam 789 ± 172 0.67 ± 0.21 0.67 ± 0.18 -0.228 ± 0.041 0.4 -0.41 ± 0.11 

Wrightwood 103 ± 12 0.59 ± 0.14 0.555 ± 0.096 -0.194 ± 0.036 0.4 1.49 ± 0.44 

Pallet C. 133 ± 18 0.62 ± 0.16 0.59 ± 0.11 -0.246 ± 0.018 0.4 1.17 ± 0.16 

Cascadia 419 ± 77 0.56 ± 0.20 0.56 ± 0.17 -0.265 ± 0.014 0.4 -0.23 ± 0.38 

Pakarae R. 866 ± 137 0.48 ± 0.16 0.49 ± 0.15 -0.265 ± 0.049 0.4 -0.04 ± 0.62 

Awater 1072 ± 341 0.76 ± 0.29 0.80 ± 0.27 -0.19 ± 0.11 0.4 -0.46 ± 0.93 

Rotoitipakau 1108 ± 276 0.71 ± 0.24 0.71 ± 0.21 -0.239 ± 0.071 0.4 0.14 ± 0.38 

Daqingshan 2304 ± 327 0.45 ± 0.14 0.45 ± 0.14 -0.241 ± 0.038 0.4 -0.21 ± 0.72 

Zemuhe 1862 ± 357 0.56 ± 0.17 0.56 ± 0.17 -0.271 ± 0.041 0.4 0.25 ± 0.36 

Nankai 149 ± 17 0.38 ± 0.11 0.38 ± 0.10 -0.212 ± 0.050 0.4 -0.9 ± 1.3 

Miyagi 40.3 ± 3.4 0.173 ± 0.069 0.170 ± 0.063 -0.0543 ± 0.0060 0.4 -4.1 ± 1.8 

Atera 1745 ± 210 0.30 ± 0.11 0.30 ± 0.11 -0.175 ± 0.062 0.4 -1.7 ± 1.3 

Tan'na 1151 ± 114 0.223 ± 0.083 0.224 ± 0.082  -0.131 ± 0.049 0.4 -2.9 ± 1.5 

Atotsugawa 2300 ± 417 0.38 ± 0.16 0.39 ± 0.16 -0.225 ± 0.082 0.4 -0.8 ± 1.1 

Nagano 952 ± 163 0.61 ± 0.19 0.60 ± 0.15 -0.231 ± 0.015 0.4 -0.63 ± 0.17 
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      Gamma   Weibull   Double- exponential 

Sequence Trm [yr] Cv  dlnL  dlnL b dlnL 

Fucino 2059 ± 289 0.35 ± 0.13 14 ± 16 -0.151 ± 0.063 3.4 ± 1.6 1.03 ± 0.27 549 ± 232 -0.82 ± 0.30 

Irpinia 1989 ± 545 0.67 ± 0.25 3.7 ± 5.7 -0.203 ± 0.027 1.74 ± 0.82 0.42 ± 0.25 1033 ± 529 -1.51 ± 0.44 

Cittanova 2028 ± 587 0.70 ± 0.26 3.5 ± 5.4 -0.157 ± 0.077 1.67 ± 0.81 0.43 ± 0.20 1105 ± 574 -1.55 ± 0.41 

Skinos 180 ± 61 0.79 ± 0.29 2.6 ± 3.3 -0.441 ± 0.089 1.48 ± 0.69 0.06 ± 0.39 112 ± 69 -2.09 ± 0.56 

El Asnam 789 ± 172 0.67 ± 0.21 3.1 ± 2.8 -0.3192 ± 0.0033 1.66 ± 0.59 0.57 ± 0.33 406 ± 165 -2.41 ± 0.51 

Wrightwood 103 ± 12 0.59 ± 0.14 3.4 ± 1.8 -0.78 ± 0.20 1.78 ± 0.45 1.25 ± 0.78 46 ± 12 -3.80 ± 0.82 

Pallet C. 133 ± 18 0.62 ± 0.16 3.2 ± 1.9 -0.61 ± 0.18 1.72 ± 0.47 0.97 ± 0.66 62 ± 18 -3.23 ± 0.74 

Cascadia 419 ± 77 0.56 ± 0.20 4.8 ± 4.8 -0.238 ± 0.046 2.04 ± 0.82 0.74 ± 0.35 179 ± 75 -1.49 ± 0.49 

Pakarae R. 866 ± 137 0.48 ± 0.16 6.3 ± 5.8 -0.214 ± 0.059 2.34 ± 0.90 0.92 ± 0.34 321 ± 126 -1.28 ± 0.42 

Awater 1072 ± 341 0.76 ± 0.29 3.0 ± 4.6 -0.178 ± 0.0.70 1.54 ± 0.76 0.33 ± 0.21 639 ± 356 -1.74 ± 0.47 

Rotoitipakau 1108 ± 276 0.71 ± 0.24 2.9 ± 2.7 -0.292 ± 0.027 1.60 ± 0.62 0.39 ± 0.31 (602 ± 276 -1.97 ± 0.53 

Daqingshan 2304 ± 327 0.45 ± 0.14 7.2 ± 7.2 -0.217 ± 0.078 2.5 ± 1.0 0.97 ± 0.37 796 ± 307 -1.21 ± 0.44 

Zemuhe 1862 ± 357 0.56 ± 0.17 4.7 ± 4.6 -0.246 ± 0.046 2.03 ± 0.80 0.72 ± 0.33 798 ± 329 -1.50 ± 0.46 

Nankai 149 ± 17 0.38 ± 0.11 9.3 ± 8.4 -0.201 ± 0.074 2.9 ± 1.0 1.64 ± 0.44 44 ± 14 -1.37 ± 0.43 

Miyagi 40.3 ± 3.4 0.173 ± 0.069 49 ± 36 -139 ± 505 6.9 ± 4.5 1.45 ± 0.31 5.4 ± 2.4 -0.67 ± 0.21 

Atera 1745 ± 210 0.30 ± 0.11 18 ± 19 -0.15 ± 0.12 3.9 ± 1.8 1.14 ± 0.27 400 ± 165 -0.72 ± 0.29 

Tan'na 1151 ± 114 0.223 ± 0.083 32 ± 30 -2.9 ± 14 5.4 ± 3.9 1.33 ± 0.20 196 ± 79 -0.56 ± 0.20 

Atotsugawa 2300 ± 417 0.38 ± 0.16 14 ± 119 -0.12 ± 0.14 3.3 ± 2.9 0.73 ± 0.27 670 ± 340 -0.72 ± 0.29 

Nagano 952 ± 163 0.61 ± 0.19 3.5 ± 2.6 -0.357 ± 0.085 1.79 ± 0.58 0.79 ± 0.55 446 ± 161 -2.21 ± 0.69 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Highlights 

 an innovative contribution to seismic hazard assessment
 

 We tested the null hypothesis  using the concept of likelihood.
 We accomplished these tests for the most popular statistical models.
 We find a renewal model better than a Poisson model only for 4, out  of 19 

sites.

 

 


