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Tectonics and seismicity of Greece



The Gulf of Corinth has long been recognized as one of the most 
active rifts in the highly seismic Aegean. Its quaternary normal faulting, 
its high level of seismicity, and the 1 cm/yr overall N–S geodetic 
extension rate, makes it a key place within the Mediterranean area to 
study the physical processes related to the seismic cycle. 
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Seismicity of the Corinth Gulf area



Cumulative distribution of earthquakes
(M≥6.0)



The Corinth Gulf fault system 
“adjusted” segmentation



Segment 

number

Segment name Slip rate Recurrence 

time

1 Psathopyrgos 6 mm/yr 126

2 Aigion 6 mm/yr 146

3 Heliki 6 mm/yr 260

4 Offshore Akrata 5 mm/yr 40

5 Xylokastro 5 mm/yr 252

6 Offshore Perachora 4 mm/yr 135

7 Skinos 3 mm/yr 319

8 Aelpochori 3 mm/yr 285
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The faults are supposed to behave
independently of each other according to a  

probability distribution of the inter-event 
times as described by the Brownian 
Passage Time (BPT) renewal model: 
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An alternative inter-event time distribution 
tested in this study is the Weibull 

distribution:
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The probability of occurrence of a new event
in a given time window Dt, conditional to the  

occurrence of no events before time t, is 
obtained from the density distribution 

of the recurrence times:



We compute the stress tensor change due 
to slip on a rectangular fault on the surrounding
elastic environment.
The Coulomb stress change is a linear 
combination of the shear and normal stress: 

Theoretical basis

The computation of DCFF requires the 
knowledge of the focal mechanism of the 
impending earthquake on the triggered fault. 
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The time elapsed since the previous earthquake 
is modified by a shift proportional to DCFF:

where       is the tectonic stressing rate. 

:


Alternatively, the stress change can be 

equivalent to a modification of the expected 
recurrence time: 



Observed

Forecast Yes No

Yes a b 

No d c 

Contingency table



The ROC diagram is a plot where the X-axis 
(false alarm rate) is defined as 
F = b/(b+c)   (fraction of alarms issued 
where an event has not occurred)
and the Y-axis (hit rate) is defined as
H = a /(a+d)  (fraction of events that occur 
on an alarm cell).
H depends on the probability threshold 
adopted for giving alarm. 



The R-score is defined as the number of 
cells in which earthquakes are 
successfully predicted / the total number 
of cells containing alarms – the number of 
failures to predict / the total number of 
cells without any alarms:

R = a / (a+b) – d / (c+d)

(still function of the probability threshold 
adopted for giving an alarm).



The probability gain is the ratio between 
the conditional probability (success rate) 
and the unconditional probability  (average 
occurrence rate):

G = a /(a+d)  e /(a+b) = H  e /(a+b)

(where  e = a+b+c+d)

This is also function of the probability 
threshold adopted for giving an alarm. 



Definition of the likelihood for the realization of 
a binomial process under a certain hypothesis 
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pi: probability associated to every cell in the space-time-
magnitude volume
ci: binary value of non-occurrence (0) or occurrence (1) of the 
event in the respective cell
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Conditional probability (BPT distribution)
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Source modeling in the Corynth Gulf



Coulomb stress change estimated at 
the end of the test (2010)



Coulomb stress change estimated at 
the end of the test (2010)



Coulomb stress change estimated at 
the end of the test (2010)
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Conditional probability (BPT + DCFF)
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ROC Diagram
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R-score vs. false alarm rate
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Probability gain vs. false alarm rate
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Log-likelihood ratio assuming the Poisson hypothesis
as reference model (Psathopyrgos segment)
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Log-likelihood ratio assuming the Poisson hypothesis
as reference model (Aigion segment)
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Log-likelihood ratio assuming the Poisson hypothesis
as reference model (Perachora segment)
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Log-likelihood ratio assuming the Poisson hypothesis
as reference model (Corinth Gulf fault system)
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Log R=Log(L)-Log(L0)

1) L=BPT, L0=Poisson Log R=0.95
2) L=BPT+DCFF, L0=Poisson Log R=1.01
3) L=BPT+DCFF, L0=BPT Log R=0.058
4) L=Weibull, L0=Poisson Log R=0.93
5) L=Weibull+DCFF, L0=Poisson Log R=0.88
6) L=Weibull+DCFF, L0=Weibull Log R=-0.050

Comparison between different hypotheses
(final log-likelihood ratio)



CONCLUSIONS
The characteristic earthquake hypothesis modeled
by the BPT or the Weibull distributions has been 
tested on the system of 8 segments in the southern 
coast of the Corinth Gulf (Greece).
The renewal (time-dependent) hypothesis performs 
slightly better than the time-independent Poisson 
hypothesis.
The BPT and the Weibull distributions achieve very 
similar results.
The inclusion in the model of the clock change due to 
co-seismic static stress interaction among different 
segments doesn’t seem to improve the results. 




