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ABSTRACT

This study describes three earthquake occurrence models as applied to the
whole Italian territory, to assess the occurrence probabilities of  future
(M ≥ 5.0) earthquakes: two as short-term (24 hour) models, and one as
long-term (5 and 10 years). The first model for short-term forecasts is a
purely stochastic epidemic type earthquake sequence (ETES) model. The
second short-term model is an epidemic rate-state (ERS) forecast based on
a model that is physically constrained by the application to the earthquake
clustering of  the Dieterich rate-state constitutive law. The third forecast is
based on a long-term stress transfer (LTST) model that considers the
perturbations of  earthquake probability for interacting faults by static
Coulomb stress changes. These models have been submitted to the
Collaboratory for the Study of  Earthquake Predictability (CSEP) for
forecast testing for Italy (ETH Zurich), and they were locked down to test
their validity on real data in a future setting starting from August 1, 2009.

Introduction
Despite the notable lack of  success for reliable prediction

of  destructive earthquakes, there has been a recent
resurgence of  research into earthquake predictability that is
now motivated by better monitoring networks and data of
past events, new knowledge of  the physics of  earthquake
ruptures, and a more comprehensive understanding of  stress
evolution and transfer. Unlike the old deterministic way of
formulating earthquake predictions, which was based on
various kinds of  more or less popular precursors, much of
the recent research into earthquake prediction is aimed at a
quantitative specification of  the uncertainty characterizing
earthquake forecasts. These forecasts are formulated in
statistical terms, and are currently applied to probabilistic
hazard assessments of  earthquake risk. Most importantly, the
objective definition of  the forecasting models and their
capacity for computing the space-time density rate of  future
earthquakes allows the testing of  such models in a
prospective way, against observations of  the real seismicity
[Console 2001, Jordan 2006].

Stochastic short-term models that describe the
phenomenon of  earthquake clustering are achieving
increasing success in the seismological community [e.g.,

Helmsetter et al. 2006]. These models were proposed to
answer the most common questions of  the general public
and the media that arise in particular after sizable events,
such as, «What will happen next?» and, «What is the chance
that another large earthquake will occur?».

Stochastic short-term models describe seismicity as a
random point-process, for which a continuous space-time
density distribution of  the earthquake occurrence can be
defined. A best-fit procedure based on the maximum
likelihood criterion has been used for statistical analysis of
random processes. In particular, Kagan and Knopoff  [1976,
1987], Kagan [1991], Ogata [1999], Kagan and Jackson [2000],
Console and Murru [2001], Imoto [2004], Rhoades and
Evison [2006], and Helmstetter et al. [2006] have applied the
likelihood method to earthquake occurrence studies.

A different approach is associated with forecasting the
time of  the next earthquake in the long term: that of  the
hypothesis of  characteristic earthquakes. This probabilistic
approach assumes that on a given seismogenic source, strong
earthquakes will occur over the time of  interest that have
similar rupture areas, similar mechanisms, and similar
magnitudes, with their time intervals characterized by a
remarkable regularity. These earthquakes are often assumed
to have similar hypocenters, similar displacement distributions
within the rupture area, similar source-time functions (leading
to similar seismograms), and a quasi-periodic recurrence. This
approach can be applied assuming a renewal model with
memory. In the renewal model, the elastic strain energy
accumulates over a long period of  time, after the occurrence
of  one earthquake and before the fault will release the energy
as the next earthquake. This model of  earthquake occurrence
assumes that the probability of  an earthquake is initially low
following a segment-rupturing earthquake, and increases
gradually as the tectonic processes reload the fault.

A direct implication of  the characteristic earthquake
hypothesis is that the occurrence of  earthquakes on
individual faults and fault segments does not follow a log-
linear frequency-magnitude relationship of  the form
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described by Gutenberg and Richter [1944] (logN= a − bM).
The characteristic earthquakes are assumed to be large
enough to dominate the seismic moment release, and to
substantially reduce the average stress. This approach to
earthquake forecasting has been widely applied as the basis
for long-term forecasts of  future seismic activity, particularly
in Japan and the United States.

Progress is also being made with physically constrained
models that link stress changes to seismicity rate changes
using the Dieterich rate-and-state model [Ruina 1983,
Dieterich 1986, Dieterich 1992, Dieterich 1994, Stein et al.
1997, Parsons 2004, Parsons 2005].

Validation of  earthquake forecasting/prediction models
is the main rationale behind some recent international
efforts, including Regional Earthquake Likelihood Models
(RELM) and Collaboratory for the Study of  Earthquake
Predictability (CSEP). The validation process consists of  two
steps: 1) running of  all of  the codes simultaneously to
forecast future seismicity in well-defined testing regions; and
2) comparison of  the forecasts through a suite of  tests. These
tests are mostly based on the likelihood score, and they
evaluate both the time and space performances of  the
forecasting models. All of  these tests rely on some basic
assumptions that have never been deeply discussed and
analyzed. In particular, it is assumed that in each
spatiotemporal bin, any forecasting model is expected to
produce a number of  earthquakes according to a Poisson
distribution (with the rate estimated by the forecasting
model), and independent of  adjacent bins.

Here, we give a brief  description of  three different
forecasting models that we have submitted on the Test
Center for earthquake forecasting/prediction experiments
of  the CSEP initiatives at ETH in Zurich. All of  these models
cover the whole of  Italy as our testing region. The data for
the learning phase have come from the seismic catalog
collected by the Istituto Nazionale di Geofisica e
Vulcanologia (INGV), which cover from July 1, 1987, to
January 1, 2009, for a minimum magnitude of  2.1. We
present two 24-hour forecasts that are based on the epidemic
type aftershock sequence (ETAS) models [e.g., Ogata 1998,
Console and Murru 2001], with the starting time for these
forecasts of  August 2009. The first model for short-term
forecasts is a purely stochastic epidemic type earthquake
sequence (ETES) model, where the temporal aftershock
decay rate is governed by the modified Omori Law [Ogata
1983], and the distance decay follows a power law. The
second short-term epidemic rate-state (ERS) forecast uses the
Dieterich [1994] rate and state model to predict the spatial
and temporal decay of  the aftershocks. This more physical
approach requires knowledge of  the stress changes caused
by each event. Rather than computing this directly for each
triggering event (e.g., using the focal mechanism with
Coulomb stress calculations), we assume that it follows a

radially symmetric power-law decay with distance. For
further information on the ETES and ERS models adopted,
reference can be made to the studies of  Console and Murru
[2001], Console at al. [2003, 2006a, 2006b, 2007, 2010a, 2010c]
and Murru et al. [2009]. Both of  these epidemic models
assume that each event can spawn its own sequence of  events
(including aftershocks of  aftershocks) and a Gutenberg-
Richter distribution of  events. The ETES and ERS models
have been tested on real seismicity in Italy, the United States,
Greece and Japan, through comparisons with a plain time-
independent Poisson models based on likelihood methods;
these have shown the validity of  these models in a
retrospective way [Console et al. 2003, 2006a, 2006b, 2007].

The ETES model has been applied since 2006 in an
automatic way to the real-time data of  the Italian Earthquake
Data Center that is operated by the INGV [Murru et al. 2009].
Moreover, a real application was started for the first time soon
after the strong earthquake that struck the city of  L'Aquila
(central Italy) on April 6, 2009, at 01:33 UTC (Mw ≥ 6.3). For a
duration of  a number of  months, 24-hour earthquake
forecasts were produced in near real time through an
algorithm based on the ETES model, which were provided
every morning for the Italian Agency of  Civil Protection, for
their use in the planning of  rescue activities. At the time of
the preparation of  this article, this whole real-time process
based on both the ETES and the ERS models was being
developed at the INGV, as a real-time automatic information
system that will be accessible as an experimental and
confidential system through a specific website. This system is
designed to become a public information service in the future.

We also present here our 5-year and 10-year earthquake
forecasts that are based on a long-term model that considers
the perturbations of  earthquake probability for interacting
faults by static Coulomb stress changes, which we refer to as
long-term stress transfer (LTST). A similar approach has
already been applied in Italy by Console et al. [2010b].

A short-term forecasting model based on earthquake
clustering probability: the ETES model

Here we consider the short-term clustering properties
of  earthquakes, and we provide a brief  outline of  a statistical
method for modeling the interrelationships between any
earthquake and any other, as applied to the real-time Italian
data at the ETH Testing Center; for further details, see the
citations in the Introduction. This method is based on
algorithms pertaining to the ETAS model that we have
reported previously. Here, we have named this as the ETES
model, to distinguish it from other ETAS models of  the ETH
Testing Center.

This stochastic process is characterized by a limited
number of  free parameters, as fr, k, c, p and d0 in Equation (1),
which allow the computation of  the expected occurrence-
rate density as a continuous function in space and time,
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according to the definition of  Ogata [1998], for the
assessment of  their maximum likelihood values [Kagan
1991]. The expected occurrence-rate density is modeled as
the sum of  the independent, or time-invariant
"spontaneous", activity fr m0(x, y, m), where fr is a factor
known as the «failure rate» (i.e., the ratio between the
expected number of  independent events and the total
number of  events), and the contribution of  every previous
event using a kernel function that correctly takes into
account: (i) the magnitude of  the j-th triggering earthquake;
(ii) the spatial distance r from the triggering event; and (iii)
the time interval (t-tj) between the triggering event and the
instant considered for the computation, such that:

(1)

Although the coefficient fr is constant in space and time,
the ratio between the background seismicity and the total
seismic rate is not the same at any given time. During a
sequence, the occurrence rate is dominated by the second
term on the right-hand side of  Equation (1). The failure rate
fr is just the average proportion of  independent events to the
total number of  events, such that Equation (1) holds when it
is integrated over a large space-time volume. The smooth
total time-independent rate-density function m0(x, y, m) is
computed using the method introduced by Frankel [1995],
which was described in detail by Console and Murru [2001]
and then successively modified by Console et al. [2010c,
2010d]. The correlation distance used in the exponential
kernel distribution of  the smoothing algorithm, which was
found to be 29 km, was determined by maximizing the
likelihood of  the seismicity contained in half  of  the catalog,
under the time-independent model obtained from the other
half  of  the catalog.

In our smoothing algorithm, the events received a
weight proportional to the probability of  being independent,
as in the method introduced by Zhuang et al. [2002]. These
weights were adjusted following an iterative procedure that
was similar to that adopted by Marsan and Longliné [2008].
The rate distribution m0(x, y, m) was obtained from the
distribution based on the weighted catalog, by normalizing
this to the actual total number of  events in the catalog.

During a sequence, the occurrence rate is dominated by
the second term on the right-hand side of  Equation (1). This
does not mean that the fr needs to change in time and space.
The coefficient fr is just the average proportion of  independent
events, such that Equation (1) holds when it is integrated over
a large space-time interval.

In our algorithm, parameter fr is not determined from the
best fit in the learning phase, because it is related to all of the other
parameters of the model by the condition that Equation (1) must

give the total number of observed events when it is integrated
over the whole space-time volume spanned by the catalog.

Figure 1 shows the smoothed seismicity in the Italian
region for period from July 1, 1987, to January 1, 2009. We
fixed the value of  q (the exponent of  the spatial kernel of
triggered events) at 1.5, which is a value close to that
obtainable from the maximum likelihood best fit, such that
this limits the number of  free parameters in the model and
makes the inversion procedure more robust. The b value of
the Gutenberg-Richter magnitude distribution is assumed to
be constant over the geographical area spanned by the
catalog, and it has been obtained independently of  the other
free parameters, the meaning of  which is reported in Table 1.
The b value was determined from the maximum likelihood
method of  Aki [1965] (b = 0.9):

(2)

where Mmean is the mean magnitude, and M0 = Mc − 0.05
(0.05 is half  the magnitude bin unit of  0.1).

The average triggering distance of  the aftershock zone, dj,
is related to the magnitude of  the main shock, mj, such that:

(3)

According to Equation (2), in our ETES model the
average density of  the triggered events does not depend on
the magnitude of  the triggering event. This allows a
reduction by one free parameter with respect to other
versions of  the ETAS model [see for example, Ogata 1998,
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Figure 1. Smoothed distribution of  the Italian seismicity (from July 1,
1987, to January 1, 2009) through the smoothing algorithm using 29 km
as the correlation distance. The color scale represents the average
number of  earthquakes (M ≥ 2.1 and h ≤ 70 km) in an area of  2 km × 2 km
over this time period.
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Ogata and Zhuang 2006]. We fixed the value of  a at 1.0, to
reduce the number of  free parameters to be determined in
the inversion, which increases the stability of  the data.
Indeed, parameter a is strongly correlated to parameter k.

The learning dataset for the best fit of  the model
parameters was the Italian seismic catalog from July 1, 1987,
to January 1, 2009, over a rectangular area of  1,000 km ×
1,200 km centered on the point with the geographical
coordinates (42.0N, 13.0E). This provided 14,083 events of
magnitude ≥2.1 (assumed this as the lower magnitude
threshold of  both the triggering and target events). A
comprehensive analysis of  the completeness for this catalog
and its variations in time justified the choice of  magnitude
≥2.1, as carried out by Console et al. [2010a]. Here, we
ignored the effects of  increases in completeness magnitude
soon after large mainshocks.

The maximum-likelihood best-fit parameters of  the
ETES model provided the results shown in Table 1. It can be
noted here that the log-likelihood values are positive, while
the values from most other studies are negative. This comes
from the units chosen for m. As in all of  our previous studies
[Console and Murru 2001; Console et al. 2003, 2006a, 2006b,
2007, 2010a, 2010c; Murru et al. 2009], we have multiplied m
by a large factor V0, the dimensions of  which are the inverse
of  those of  m. This is equivalent to adding a large positive
constant to the LogL.

Even if  the data shown in Table 1 do not represent a test, as
this is not the purpose of  this study, it can be noted that, as
expected, the likelihood of the catalog under the time-dependent
clustering hypothesis is greater by far than that of  the simple
time-independent, spatially variable Poisson hypothesis.

A physically constrained epidemic model: the ERS model.
Application of the rate-state model to earthquake clustering

We have also submitted a slightly different epidemic
model to the ETH Testing Center: the ERS model, for
short-term forecasting of  moderate and large earthquakes
in Italy. This model merges into a single algorithm the
classical concept of  ETAS (the purely stochastic model)
and the rate-state constitutive law for the seismicity rate, as
introduced by Ruina [1983] and Dieterich [1986, 1992,
1994]. In practice, our ERS model derives from the more
typical ETES model by the substitution of  the Omori law
with Equation (3) for the temporal decay of  the triggered
events, and from some physical constraints put on the
spatial distribution of  the triggered events. The final model
is stochastic, which allows computation of  the likelihood
of  a seismic catalog, but which also reflects to at least some
extent the physics of  the earthquake processes [Console et
al. 2006a, Console et al. 2007]. According to Dieterich
[1994] the rate m(t) of  earthquakes after a Dx stress change
at time t = 0 is given by:
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Parameter Value

Number of  events with M ≥ 2.1.................................................................................................................................... 14,083

Lower magnitude threshold of  triggering events......................................................................................................... 2.1

Lower magnitude threshold of  target events............................................................................................................... 2.1

K (days p−1)
Productivity coefficient in Eq. (1)................................................................................................................................. 0.01896

c (days)
Time constant in Omori law......................................................................................................................................... 0.01195

p
Exponent in Omori law................................................................................................................................................. 1.0510

d0 (km)
Characteristic triggering distance in the spatial distribution........................................................................................ 0.143

fr
Fraction of  spontaneous events.................................................................................................................................... 0.535

lnL1
Maximum log-likelihood of  the catalog under the clustering hypothesis.................................................................... 170,380.2

lnL0
Maximum log-likelihood of  the catalog under the Poisson hypothesis....................................................................... 144,926.0

dlogL = ln(L1/L0)
Log-likelihood ratio...................................................................................................................................................... 25,454.2

Table 1. Best-fit parameters of  the ETES purely stochastic model optimized over the learning phase ( July 1987 to January 2009).
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(4)

where m0 is the previous reference rate density, and A, v and
ta are the physical parameters of  the constitutive law. For all
of  our applications, A and v always appear as a multiplicative
product, so we consider this product as only one
independent parameter.

It is also possible to show that ta is equal to Av divided
by the stressing rate of  the seismic area,   , and the latter is
itself  related to the reference rate m0 [Dieterich 1994, Console
et al. 2006a]. Rather than computing the stress change Dx
caused at any point by any earthquake, for which it would
be necessary to know the source parameters of  all of  the
earthquakes, we have introduced a shortcut that allows use
of  the most common of  the catalog information: the origin
time, the epicenter coordinates, and the magnitude.
Empirically, we hypothesize that the stress change produced
by an earthquake is given by:

(5)

where Dx0 is a free parameter that represents the maximum
shear stress produced by the fault at its epicenter, r and q
have the same meaning as in Equation (1), and dj is as in
Equation (3).

Equation (4) implies that the stress increases everywhere,
which may appear not very physical. However, experience has
shown that frequently it is difficult to detect the effects of
negative DCFF in terms of  seismicity shadows. Several
explanations have been proposed to justify this circumstance,
among which there are the heterogeneity of  slip on the
causative fault and the effects of  dynamic stress. In synthesis,
seismicity increase is much more commonly observed than
seismicity decrease. Moreover, in our case, there is also
spreading of  the triggered events due to location errors,
which at least for weak triggering events, might dominate the
geometric distribution.

It must be noted also that while the rate-state model
specifies that the influence of  successive stress steps multiply
each other [see e.g. Dieterich 1994], our ERS model simply
adds the contributions from each earthquake, as for all of  the
models of  the ETAS group.

For numerical applications, it is necessary to define the
values of  the various parameters. In this study we aimed to
reduce the number of  free parameters as much as possible,
so we arbitrarily fix the values of  some of  the parameters
that can be reasonably estimated based on prior experience.
These included:

• d0 is the radius of  a circular fault of  magnitude m0, and
it was derived from the equivalent seismic moment M0

through expression of  the seismic moment for a circular fault
in terms of  stress drop and source radius [Keilis-Borok 1959],

and of  the relationship between the seismic moment M0 and
the magnitude m of  an earthquake. For a magnitude
threshold m0 = 2.1, the computation gave d0 = 64 m.

• q was fixed at 1.5, as in the previous section, and for
consistency with the theory of  elasticity (Dx decays as r−3

when r → ∞, and the total number of  triggered events is
proportional to Dx, according to Equation 3).

• b was estimated from the catalog analyzed.
• the geographical distribution of  m0 was as adopted for

the ETES model.
This left us with only Dx0 and the product Av as free

parameters in this new model, to be determined by a
maximum-likelihood best fit. For the ERS model, the best
fit provided the following values: Dx0 = 0.08 MPa; Av =
0.012 MPa.

The maximum log-likelihood under the ERS and
Poisson models were 152,092.69 (lnL1) and 144,926.00 (lnL0),
respectively, with fr and dlog (= ln(L1/L0)) of  0.84 and
7,166.69, respectively. The comparison between the
maximum log-likelihood of  the previous ETES model and
that of  this ERS model gives a dlogL of  18,287.51.

As mentioned for the data with the ETES model, these
data cannot be considered as a test of  the models (which is the
purpose of  the CSEP Testing Center). However, a comparison
of  the data for the ETES and ERS models in the learning phase
shows a clear difference in favor of  the ETES model. This was
not the case in a previous study that was carried out on
Japanese seismicity [Console et al. 2006a]. As far as we
understand, the explanation for this lies in the smaller value
that was adopted in the ERS model for the spatial parameter
d0, which was not a free parameter: d0 = 64 m, compared to
d0 = 134 m obtained from the best fit of  the ETES model.
The latter value accounts for the geometrical spreading due
to uncertainties in epicenter locations. This circumstance
was not so important for the larger magnitudes of  the
Japanese earthquakes analyzed by Console et al. [2006a].

To submit our models to the Testing Center of  the
CSEP at ETH in Zurich, two codes were written to supply
an output file in the format specified by the Testing Center:
for each magnitude bin of  0.1 unit in the range from 4.0 to
9.0, the codes supply a Table containing the expected
number of  events in adjacent cells covering the test area of
0.1˚× 0.1˚.

Figure 2 shows examples of  how the ETES and ERS
models work with real data that shows the spatial changes
of  the expected occurrence rate density over 24 hours
starting from March 21, 2009 (00:00 UTC). The parameter
values used in these cases are reported in Table 1 for the
ETES model and in this section for the ERS model. In Figure
2b (ERS), a background seismicity that is higher than that in
Figure 2a (ETES) stands out, which is consistent with a larger
number of  independent events with respect to the total
number of  events. Conversely, the ERS model shows a
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seismicity that is characterized by greater peaks, but is
spatially concentrated. A small zone can be seen in central
Italy where the expected rate of  M ≥ 5.0 events in these next
24 hours was larger than 0.1 (events/day/cell). This zone
shows the effects of  the L'Aquila seismic sequence that
started in December 2008, and that strongly hit the city of
L'Aquila in the Abruzzo region, central Italy, on April 6, 2009,
at 01:33 UTC (Mw ≥ 6.3).

Long-term stress transfer model
The methodology adopted with the LTST algorithm

was based on fusion of  a statistical renewal model with a
physical model that considered fault interactions that in real
circumstances can either increase or decrease the future
earthquake probability, with respect to what would be
expected by a simple renewal model. We considered the fault
interactions by computation of  the co-seismic static
permanent Coulomb stress change (DCFF) caused by all of
the earthquakes that occurred after the latest characteristic
earthquake on a given investigated fault segment and in the
surrounding sources.

According to the methodology developed over the last
decade [Stein et al. 1997, Toda et al. 1998, Parsons 2004], and
also applied by Console et al. [2010b], the probability of  the
next characteristic earthquake on a known seismogenic
structure (for which the mechanism and size of  the
characteristic event is given) in a future time interval (in this
case, 5 and 10 years) starts from the estimate of  its
occurrence rate, which is conditioned by the time (t) that has
elapsed since the previous characteristic event. To do this,

two parameters are necessary: the expected mean recurrence
time, Tr, and the aperiodicity, a (also known as the coefficient
of  variation) of  the renewal process [Mc Cann et al. 1979,
Shimazaki and Nakata 1980]. In the present study, from
among various statistical renewal models, we adopted the
Brownian passage-time distribution (BPT) [Matthews et al.
2002] to represent the inter-event time probability
distribution, f (t), for earthquakes on individual sources.

This distribution function that provides the instantaneous
number of  events is expressed as:

(6)

The influence of  the stress change on the probability of
an impending characteristic event was computed by
introduction of  a permanent shift (clock advance or delay)
in the time, t, that had elapsed since the previous earthquake,
obtaining a modified time t’ according to:

(7)

where DCFF is the static stress change, and     is the tectonic
stressing rate (assumed to be unchanged by the stress step).

As DCFF is not uniform on the receiving fault, we
adopted its average value, which was given by the sum of
the values computed on small elements of  the triggered
fault, divided by the number of  elements.

We now need to consider how the stress changes caused
by earthquakes that occurred on neighboring faults might
affect the probability of  occurrence of  the next possible event
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Figure 2.Modeled expected occurrence-rate density (events M ≥ 4.0, per day per cell of  0.1˚× 0.1˚) for the whole Italian territory, starting on March 21,
2009, 00:00 UTC, for the following 24 hours. (a) ETES model. (b) ERS model.
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in the future time intervals of  5 years and 10 years, starting
from August 2009. The analysis was carried out on the whole
Italian territory, which includes 119 seismogenetic sources
reported in the database of  individual seismogenic sources
(DISS), version 3.1.0 [Basili et al. 2008, DISS Working Group
2009]. Some sources in the investigated area were discarded,
as they lacked the date of  the last event. This reduced the
number of  sources to 104.

Among the causative events that potentially changed the
stress conditions on the 104 faults included, we considered
the following:

1. The characteristic events associated with the
seismogenic sources themselves (as reported in DISS 3.1.0);

2. The events from 1895 to 2004 with Mw ≥ 5.0 reported
in the parametric catalog of  the historical Italian earthquakes
CPTI04 [CPTI Working Group 2004] associated with the
DISS 3.1.0. seismogenic areas (192 events with Mw ≥ 5.0). To
this database, we added the recent largest earthquakes from
May 2004 up to the main shock of  the L'Aquila 2009 sequence
(April 9, Mw 6.4) (reported in http://emidius.mi.ingv.it).

Obviously, all of  these events were considered only once
if  they were reported by more than one information source,
with preference given to the information coming from the
source in the order as they are listed.

The stress change DCFF on an individual fault was
computed by adding the contributions from all of  the other
sources that ruptured after the latest known earthquake on
the fault considered. The computation was carried out at the
hypocenter depth of  this latest earthquake.

The implementation of  the method outlined in the
previous section requires some information that is available
in DISS, including the hypocenter coordinates, the expected
magnitude, the focal mechanism, the fault size, the average
slip, the mean recurrence time, and the date of  the latest
event. Following Ellsworth et al. [1999] and Matthews et al.
[2002], in the present study we adopted the value a = 0.5 for
the coefficient of  variation.

The fault parameters of  strike, dip, rake, dimensions
and average slip are needed for all of  the triggering sources.
The fault mechanism is also needed for the triggered source
(the receiving fault), to resolve the stress tensor on it. As we
were dealing mainly with pre-instrumental events, for which
details such as the fault shape and slip heterogeneity were
not known, we assumed rectangular faults with uniform
stress-drop distributions. We computed the clock change, Dt,
according to the ratio between DCFF and    (tectonic stress-
change rate). The clock change was positive (the fault comes
closer to failure) if  the Coulomb stress change was positive.
In the opposite case (negative change), the fault moves
farther from failure, where it is possible that in extreme
situations the elapsed time can be reset to zero. The values
of     have been computed for each source according to the
strain rates obtained by S. Barba for the INGV-Dipartimento

della Protezione Civile (DPC) S2 project (2005-2007). These
values of  the strain rate were obtained by different numerical
models of  deformation for Italy: using a finite-element
method and calculating the nodal velocity by the weighted
residual method, through the use of  the SHELLS software
[Bird 1999], which was suitably modified to include the
representation of  the seismogenic Italian faults.

The strain tensor was resolved on the specific source,
taking into account the mechanisms of  its characteristic
earthquakes. The values of  the shear-strain component so
obtained allowed the computation of       through multiplying
it by the shear modulus n = 3 × 104 MPa.
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Figure 3. Conditional occurrence probabilities obtained by the LTST
algorithm for the next characteristic earthquakes in a future timeframe
starting on August 1, 2009. Only the permanent effects have been considered.
In all, 104 seismogenic sources were considered. (a) Probabilities over the
next 5 years. (b) Probabilities over the next 10 years.
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Once the distribution function f (t) was estimated, the
expected number of  events N (rate) over a given time interval
(t, t + Dt) was computed on the cells defined by the CSEP as
0.1˚× 0.1˚ by integration:

(8)

With the hypothesis of  a generalized Poisson process,
we can estimate the probability of  earthquake occurrence in
the given time interval as:

(9)

Figure 3 shows the expected probabilities plotted on a
map of  seismogenic sources for the 5 years to 10 years from
August 2009, as the probabilities obtained from the
permanent effects only. This forecast relates to only the
individual seismic sources, and so it is not testable according
to the CSEP methodology, which is based on a grid
approach. Considering the forecast over the next 10 years
(Figure 3b), the highest probabilities are related to the
following sources: Selci_Lama (Umbria region, central Italy)
(7.37%), Aspromonte Northwest (Calabria region, southern
Italy) (6.45%), Camerino (Marche region, central Italy)
(5.16%) and Pontremoli (Liguria region, northwest Italy)
(4.61%). The last characteristic events occurred on these four
sources, on: September 30, 1789; February 6, 1783; July 28,
1799; and February 14, 1834; respectively.

To provide the CSEP Testing Center with a grid-based
forecast, the expected number of  events obtained for each of
the sources was uniformly subdivided on the basis of  the cell

numbers included inside the sources. The center of  these
cells must be inside the rectangle that delimits the vertical
projection of  the sources. Moreover, two maps of  the
expected rates for cells of  2 km × 2 km were generated using
the historical catalog (CPTI04, January 11, 1895, to May 2004;
Mw ≥ 5.0) and the Italian Seismological Instrumental and
Parametric database (ISIDE, http://iside.rm.ingv.it; July 1,
1987, to June 2005, M1 ≥ 2.1). These rates derived from the
historical and instrumental catalogs were computed by the
method introduced by Frankel [1995]. We preferred to use a
dense grid of  2 km × 2 km for the rate calculations, instead
of  the CSEP 0.1˚× 0.1˚ grid, for better resolution of  the fault
areas. Three rate values were obtained for each cell (one
provided by the sources, the second from historical data, and
the third from the instrumental catalog). We used the rate
values corresponding to the sources when the cell was inside
it. Otherwise, we used the average rate values obtained from
two catalogs if  the cells were outside of  the sources. To
submit the LTST algorithm to the CSEP Testing Center at
ETH in Zurich, code was written to supply an output file in
the format specified by the Testing Center. Thus, for each
magnitude bin of  0.1 unit in the range from 5.0 to 9.0, the
code supplies a Table containing the expected numbers of
events in adjacent cells of  0.1˚× 0.1˚ covering the Test area.
Figure 4 shows the expected event rates for M ≥ 5.0 in cells of
0.1˚× 0.1˚ for the next 5 years and 10 years.

As indicated for the short-term forecasts above, the
testing of  these models is the task of  the CSEP Testing
Center, to which our models have been submitted.
Therefore, we have not discussed this issue further in this
study, instead limiting our attention to the descriptions of
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Figure 4. Forecast maps of  modeled expected occurrence-rate density (events M ≥ 5.0, per 5 years per cell of  0.1˚× 0.1˚) for the whole Italian Test area,
starting on August 1, 2009, provided by the LTST algorithm. (a) Probabilities over the next 5 years. (b) Probabilities over the next 10 years.
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these models. Moreover, testing long-term earthquake
forecasting models on new and independent data, as is
necessary for any objective validation purposes, poses great
difficulties due to the long times needed to collect the
observational data. A description of  a retrospective test of
this LTST model can be found in Console et al. [2010b].

Conclusions
We have submitted three grid-based models to the CSEP

ETH Testing Center that were applied to the whole Italian
territory for the forecasting of  impending shocks, starting
from August 1, 2009. The first two 24-hour short-term
forecasting models are based on two epidemic-type
earthquake sequences. The ETES model is only a purely
stochastic model, while the ERS model is also based on
physical constraints through the application of  the Dieterich
rate-and-state model for earthquake nucleation. The LTST
model is a 5-10-year, long-term forecasting physical model
that considers the interactions among the seismic sources
through the computation of  the Coulomb failure functions
(DCFF). While the first two models only use the information
contained in a seismic catalog (time, latitude, longitude,
depth, magnitude), the LTST model also uses geological and
geodetic information. These models were produced to test
the validities of  their assumptions in a truly prospective test
against the observed seismicity, and to explore which models
among these submitted will be preferable for use in seismic
hazard and risk assessment.
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